留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄淮海流域实际蒸散发时空演变规律分析

杨晓甜 张建云 鲍振鑫 王国庆 管晓祥 刘翠善 金君良

杨晓甜,张建云,鲍振鑫,等. 黄淮海流域实际蒸散发时空演变规律分析[J]. 水利水运工程学报,2022(3):12-22. doi:  10.12170/20210530002
引用本文: 杨晓甜,张建云,鲍振鑫,等. 黄淮海流域实际蒸散发时空演变规律分析[J]. 水利水运工程学报,2022(3):12-22. doi:  10.12170/20210530002
(YANG Xiaotian, ZHANG Jianyun, BAO Zhenxin, et al. Temporal and spatial distribution characteristics of evapotranspiration in the Huang-Huai-Hai River basin[J]. Hydro-Science and Engineering, 2022(3): 12-22. (in Chinese)) doi:  10.12170/20210530002
Citation: (YANG Xiaotian, ZHANG Jianyun, BAO Zhenxin, et al. Temporal and spatial distribution characteristics of evapotranspiration in the Huang-Huai-Hai River basin[J]. Hydro-Science and Engineering, 2022(3): 12-22. (in Chinese)) doi:  10.12170/20210530002

黄淮海流域实际蒸散发时空演变规律分析

doi: 10.12170/20210530002
基金项目: “十三五”国家重点研发计划项目(2017YFA0605002,2017YFA0605004);国家自然科学基金资助项目(41961124007, 51779145, 41830863);江苏省“六大人才高峰”资助项目(RJFW-031)
详细信息
    作者简介:

    杨晓甜(1997—),女,江苏丹阳人,硕士研究生,主要从事水文气候变化方面的研究。E-mail:1969182814@qq.com

    通讯作者:

    鲍振鑫(E-mail:zxbao@nhri.cn

  • 中图分类号: P339

Temporal and spatial distribution characteristics of evapotranspiration in the Huang-Huai-Hai River basin

  • 摘要: 蒸散发是气候系统能量循环和水分循环的关键要素,探究黄淮海流域实际蒸散发的演变规律及其影响因素对深入理解该区域水循环对气候变化的响应具有重要意义。基于1980—2018年黄淮海流域的GLEAM蒸散发产品数据、气象数据和NDVI数据,采用线性回归法、Mann-Kendall检验及相关性分析等方法,分析了实际蒸散发的时空演变规律及其影响因素。结果表明:GLEAM产品的计算值在黄淮海流域的验证精度较好,流域内多年平均实际蒸散发量为474 mm,呈显著上升趋势。实际蒸散发的空间变化范围是183~708 mm,空间差异显著,呈现从东南向西北方向递减的趋势,季节的空间分布与年际分布特征基本一致。实际蒸散发与NDVI均呈显著正相关关系,与降水和气温以正相关关系为主。黄淮海流域降水变化不明显,气温显著升高,NDVI增加是流域内实际蒸散发量显著上升的主要原因。
  • 图  1  黄淮海流域分区及气象站点分布

    Figure  1.  Zoning of Huang-Huai-Hai River basin and distribution of meteorological stations

    图  2  黄淮海流域实际蒸散发参考值与GLEAM产品计算值的比较

    Figure  2.  Comparison of reference value and calculated value of actual evapotranspiration in Huang-Huai-Hai River basin

    图  3  黄淮海流域1980—2018年实际蒸散发年际变化

    Figure  3.  Changing trend of ET over Huang-Huai-Hai River basin during 1980-2018

    图  4  黄淮海流域多年平均年实际蒸散发空间分布

    Figure  4.  Spatial distribution of annual ET over Huang-Huai-Hai River basin during 1980-2018

    图  5  黄淮海流域多年平均季节实际蒸散发空间分布

    Figure  5.  Spatial distribution of seasonal ET over Huang-Huai-Hai River basin during 1980-2018

    图  6  黄淮海流域1980—2018年气象、植被变化率空间分布

    Figure  6.  Spatial distribution of meteorological and vegetation change rates over Huang-Huai-Hai River basin during 1980-2018

    图  7  黄淮海流域实际蒸散发与NDVI、降水量、气温的年际线性相关系数空间分布

    Figure  7.  Spatial distribution of the annual linear correlation coefficient between ET and NDVI, precipitation, temperature over Huang-Huai-Hai River basin during 1980-2018

    图  8  黄淮海流域实际蒸散发与NDVI、降水量、气温的年际偏相关系数空间分布

    Figure  8.  Spatial distribution of the annual partial correlation coefficient between ET and NDVI, precipitation, temperature over Huang-Huai-Hai River basin

  • [1] ZHANG T, CHEN Y B. Analysis of dynamic spatiotemporal changes in actual evapotranspiration and its associated factors in the pearl river basin based on MOD16[J]. Water, 2017, 9(11): 832. doi:  10.3390/w9110832
    [2] 邱丽莎, 张立峰, 何毅, 等. 2000—2018年祁连山蒸散发时空变化及影响因素[J]. 水土保持研究,2020,27(3):210-217. (QIU Lisha, ZHANG Lifeng, HE Yi, et al. Spatiotemporal variations of evapotranspiration and influence factors in Qilian Mountain from 2000 to 2018[J]. Research of Soil and Water Conservation, 2020, 27(3): 210-217. (in Chinese)

    (QIU Lisha, ZHANG Lifeng, HE Yi, et al. Spatiotemporal variations of evapotranspiration and influence factors in Qilian Mountain from 2000 to 2018[J]. Research of Soil and Water Conservation, 2020, 27(3): 210-217. (in Chinese)
    [3] 李佳, 辛晓洲, 彭志晴, 等. 地表蒸散发遥感产品比较与分析[J]. 遥感技术与应用,2021,36(1):103-120. (LI Jia, XIN Xiaozhou, PENG Zhiqing, et al. Remote sensing products of terrestrial evapotranspiration: comparison and outlook[J]. Remote Sensing Technology and Application, 2021, 36(1): 103-120. (in Chinese)

    (LI Jia, XIN Xiaozhou, PENG Zhiqing, et al. Remote sensing products of terrestrial evapotranspiration: comparison and outlook[J]. Remote Sensing Technology and Application, 2021, 36(1): 103-120. (in Chinese)
    [4] 张珂, 鞠艳, 李致家. 金沙江流域实际蒸散发遥感重建及时空特征分析[J]. 水科学进展,2021,32(2):182-191. (ZHANG Ke, JU Yan, LI Zhijia. Satellite-based reconstruction and spatiotemporal variability analysis of actual evapotranspiration in the Jinshajiang River basin, China[J]. Advances in Water Science, 2021, 32(2): 182-191. (in Chinese)

    (ZHANG Ke, JU Yan, LI Zhijia. Satellite-based reconstruction and spatiotemporal variability analysis of actual evapotranspiration in the Jinshajiang river basin, China[J]. Advances in Water Science, 2021, 32(2): 182-191. (in Chinese)
    [5] 范雪梅, 罗贤, 季漩, 等. 基于MOD16产品的怒江流域中上游蒸散发分布特征研究[J]. 水土保持通报,2019,39(2):199-205. (FAN Xuemei, LUO Xian, JI Xuan, et al. Spatial distribution of evapotranspiration in middle and upper Nujiang River basin based on MOD16 products[J]. Bulletin of Soil and Water Conservation, 2019, 39(2): 199-205. (in Chinese)

    (FAN Xuemei, LUO Xian, JI Xuan, et al. Spatial distribution of evapotranspiration in middle and upper Nujiang River basin based on MOD16 products[J]. Bulletin of Soil and Water Conservation, 2019, 39(2): 199-205. (in Chinese)
    [6] 苏布达, 孙赫敏, 李修仓, 等. 气候变化背景下中国陆地水循环时空演变[J]. 大气科学学报,2020,43(6):1096-1105. (SU Buda, SUN Hemin, LI Xiucang, et al. Impact of climate change on terrestrial water cycle in China[J]. Transactions of Atmospheric Sciences, 2020, 43(6): 1096-1105. (in Chinese)

    (SU Buda, SUN Hemin, LI Xiucang, et al. Impact of climate change on terrestrial water cycle in China[J]. Transactions of Atmospheric Sciences, 2020, 43(6): 1096-1105. (in Chinese)
    [7] 杨秀芹, 王国杰, 叶金印, 等. 基于GLEAM模型的淮河流域地表蒸散量时空变化特征[J]. 农业工程学报,2015,31(9):133-139. (YANG Xiuqin, WANG Guojie, YE Jinyin, et al. Spatial and temporal changing analysis of terrestrial evapotranspiration in Huai River basin based on GLEAM data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(9): 133-139. (in Chinese) doi:  10.11975/j.issn.1002-6819.2015.09.021

    (YANG Xiuqin, WANG Guojie, YE Jinyin, et al. Spatial and temporal changing analysis of terrestrial evapotranspiration in Huai River basin based on GLEAM data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(9): 133-139. (in Chinese) doi:  10.11975/j.issn.1002-6819.2015.09.021
    [8] 尹剑, 邱远宏, 欧照凡. 长江流域实际蒸散发的遥感估算及时空分布研究[J]. 北京师范大学学报(自然科学版),2020,56(1):86-95. (YIN Jian, QIU Yuanhong, OU Zhaofan. Remote sensing estimation and spatial-temporal analysis of evapotranspiration in Yangtze River Basin by a large scale model[J]. Journal of Beijing Normal University (Natural Science), 2020, 56(1): 86-95. (in Chinese)

    (YIN Jian, QIU Yuanhong, OU Zhaofan. Remote sensing estimation and spatial-temporal analysis of evapotranspiration in Yangtze River Basin by a large scale model[J]. Journal of Beijing Normal University (Natural Science), 2020, 56(1): 86-95. (in Chinese)
    [9] 刘蓉, 文军, 王欣. 黄河源区蒸散发量时空变化趋势及突变分析[J]. 气候与环境研究,2016,21(5):503-511. (LIU Rong, WEN Jun, WANG Xin. Spatial-temporal variation and abrupt analysis of evapotranspiration over the Yellow River source region[J]. Climatic and Environmental Research, 2016, 21(5): 503-511. (in Chinese)

    (LIU Rong, WEN Jun, WANG Xin. Spatial–temporal variation and abrupt analysis of evapotranspiration over the Yellow River source region[J]. Climatic and Environmental Research, 2016, 21(5): 503-511. (in Chinese)
    [10] 张圆, 贾贞贞, 刘绍民, 等. 遥感估算地表蒸散发真实性检验研究进展[J]. 遥感学报,2020,24(8):975-999. (ZHANG Yuan, JIA Zhenzhen, LIU Shaomin, et al. Advances in validation of remotely sensed land surface evapotranspiration[J]. Journal of Remote Sensing, 2020, 24(8): 975-999. (in Chinese)

    (ZHANG Yuan, JIA Zhenzhen, LIU Shaomin, et al. Advances in validation of remotely sensed land surface evapotranspiration[J]. Journal of Remote Sensing, 2020, 24(8): 975-999. (in Chinese)
    [11] SÖRENSSON A A, RUSCICA R C. Intercomparison and uncertainty assessment of nine evapotranspiration estimates over South America[J]. Water Resources Research, 2018, 54(4): 2891-2908. doi:  10.1002/2017WR021682
    [12] 鲁汉, 叶林媛, 罗鹏, 等. 基于遥感和再分析蒸散发数据的长江流域水循环变化时空特征研究[J]. 中国农村水利水电,2020(11):42-49, 61. (LU Han, YE Linyuan, LUO Peng, et al. Spatio-temporal characteristics of water cycle change in the Yangtze River basin based on remote sensing and reanalysis evapotranspiration data[J]. China Rural Water and Hydropower, 2020(11): 42-49, 61. (in Chinese) doi:  10.3969/j.issn.1007-2284.2020.11.008

    (LU Han, YE Linyuan, LUO Peng, et al. Spatio-temporal characteristics of water cycle change in the Yangtze River basin based on remote sensing and reanalysis evapotranspiration data[J]. China Rural Water and Hydropower, 2020(11): 42-49,61. (in Chinese) doi:  10.3969/j.issn.1007-2284.2020.11.008
    [13] 马建琴, 陈阳, 郝秀平, 等. 2001—2019年河南省地表蒸散发时空变化及其影响因素[J]. 水土保持研究,2021,28(5):134-141, 151. (MA Jianqin, CHEN Yang, HAO Xiuping, et al. Temporal and spatial changes of surface evapotranspiration and its influencing factors in Henan Province from 2001 to 2019[J]. Research of Soil and Water Conservation, 2021, 28(5): 134-141, 151. (in Chinese)

    (MA Jianqin, CHEN Yang, HAO Xiuping, et al. Temporal and spatial changes of surface evapotranspiration and its influencing factors in Henan Province from 2001 to 2019[J]. Research of Soil and Water Conservation, 2021, 28(5): 134-141,151. (in Chinese)
    [14] 姜彤, 孙赫敏, 李修仓, 等. 气候变化对水文循环的影响[J]. 气象,2020,46(3):289-300. (JIANG Tong, SUN Hemin, LI Xiucang, et al. Impact of climate change on water cycle[J]. Meteorological Monthly, 2020, 46(3): 289-300. (in Chinese) doi:  10.7519/j.issn.1000-0526.2020.03.001

    (JIANG Tong, SUN Hemin, LI Xiucang, et al. Impact of climate change on water cycle[J]. Meteorological Monthly, 2020, 46(3): 289-300. (in Chinese) doi:  10.7519/j.issn.1000-0526.2020.03.001
    [15] MA N, SZILAGYI J, ZHANG Y S, et al. Complementary-relationship-based modeling of terrestrial evapotranspiration across China during 1982—2012: validations and spatiotemporal analyses[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(8): 4326-4351. doi:  10.1029/2018JD029850
    [16] 童瑞, 杨肖丽, 任立良, 等. 黄河流域1961—2012年蒸散发时空变化特征及影响因素分析[J]. 水资源保护,2015,31(3):16-21. (TONG Rui, YANG Xiaoli, REN Liliang, et al. Temporal and spatial characteristics of evapotranspiration in the Yellow River Basin during 1961-2012 and analysis of its influence factors[J]. Water Resources Protection, 2015, 31(3): 16-21. (in Chinese) doi:  10.3880/j.issn.1004-6933.2015.03.004

    TONG Rui, YANG Xiaoli, REN Liliang, et al. Temporal and spatial characteristics of evapotranspiration in the Yellow River Basin during 1961—2012 and analysis of its influence factors[J]. Water Resources Protection, 2015, 31(3): 16-21. (in Chinese)) doi:  10.3880/j.issn.1004-6933.2015.03.004
    [17] 谷佳贺, 薛华柱, 董国涛, 等. 黄河流域NDVI/土地利用对蒸散发时空变化的影响[J]. 干旱区地理,2021,44(1):158-167. (GU Jiahe, XUE Huazhu, DONG Guotao, et al. Effects of NDVI/land-use on spatiotemporal changes of evapotranspiration in the Yellow River Basin[J]. Arid Land Geography, 2021, 44(1): 158-167. (in Chinese) doi:  10.12118/j.issn.10006060.2021.01.17

    GU Jiahe, XUE Huazhu, DONG Guotao, et al. Effects of NDVI/land-use on spatiotemporal changes of evapotranspiration in the Yellow River Basin[J]. Arid Land Geography, 2021, 44(1): 158-167. (in Chinese)) doi:  10.12118/j.issn.10006060.2021.01.17
    [18] 杨秀芹, 王国杰, 潘欣, 等. 基于GLEAM遥感模型的中国1980—2011年地表蒸散发时空变化[J]. 农业工程学报,2015,31(21):132-141. (YANG Xiuqin, WANG Guojie, PAN Xin, et al. Spatio-temporal variability of terrestrial evapotranspiration in China from 1980 to 2011 based on GLEAM data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(21): 132-141. (in Chinese) doi:  10.11975/j.issn.1002-6819.2015.21.017

    YANG Xiuqin, WANG Guojie, PAN Xin, et al. Spatio-temporal variability of terrestrial evapotranspiration in China from 1980 to 2011 based on GLEAM data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(21): 132-141. (in Chinese)) doi:  10.11975/j.issn.1002-6819.2015.21.017
    [19] KHAN M S, LIAQAT U W, BAIK J, et al. Stand-alone uncertainty characterization of GLEAM, GLDAS and MOD16 evapotranspiration products using an extended triple collocation approach[J]. Agricultural and Forest Meteorology, 2018, 252: 256-268. doi:  10.1016/j.agrformet.2018.01.022
    [20] XU T R, GUO Z X, XIA Y L, et al. Evaluation of twelve evapotranspiration products from machine learning, remote sensing and land surface models over conterminous United States[J]. Journal of Hydrology, 2019, 578: 124105. doi:  10.1016/j.jhydrol.2019.124105
    [21] 李世杰. 中国地区多种蒸散发产品验证分析及其变化机制研究[D]. 南京: 南京信息工程大学, 2019.

    LI Shijie. Assessment of multi-evapotranspiration products over China and their mechanism study[D]. Nanjing: Nanjing University of Information Science & Technology, 2019. (in Chinese)
    [22] 管晓祥, 金君良, 黄爱明, 等. 黄河流域典型流域水文气象变化与径流过程模拟[J]. 水利水运工程学报,2019(5):36-43. (GUAN Xiaoxiang, JIN Junliang, HUANG Aiming, et al. Typical hydro-meteorological changes and runoff process simulation in Yellow River Basin[J]. Hydro-Science and Engineering, 2019(5): 36-43. (in Chinese) doi:  10.12170/201905005

    GUAN Xiaoxiang, JIN Junliang, HUANG Aiming, et al. Typical hydro- meteorological changes and runoff process simulation in Yellow River Basin[J]. Hydro-Science and Engineering, 2019(5): 36-43. (in Chinese)) doi:  10.12170/201905005
    [23] 李淼, 鲍振鑫, 王卫光, 等. 基于空间网格化的黄淮海流域降水插值研究[J]. 华北水利水电大学学报(自然科学版),2019,40(6):39-46. (LI Miao, BAO Zhenxin, WANG Weiguang, et al. Study on precipitation interpolation of HHH river basin based on spatial gridding[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2019, 40(6): 39-46. (in Chinese)

    LI Miao, BAO Zhenxin, WANG Weiguang, et al. Study on precipitation interpolation of HHH river basin based on spatial gridding[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2019, 40(6): 39-46. (in Chinese))
    [24] 刘晶, 鲍振鑫, 刘翠善, 等. 近20年中国水资源及用水量变化规律与成因分析[J]. 水利水运工程学报,2019(4):31-41. (LIU Jing, BAO Zhenxin, LIU Cuishan, et al. Change law and cause analysis of water resources and water consumption in China in past 20 years[J]. Hydro-Science and Engineering, 2019(4): 31-41. (in Chinese) doi:  10.12170/201904005

    LIU Jing, BAO Zhenxin, LIU Cuishan, et al. Change law and cause analysis of water resources and water consumption in China in past 20 years[J]. Hydro-Science and Engineering, 2019(4): 31-41. (in Chinese)) doi:  10.12170/201904005
    [25] 黄俊雄, 韩丽, 许志兰, 等. 基于Budyko理论的北京地区实际蒸散发估算及特征研究[J]. 水资源与水工程学报,2020,31(3):1-7. (HUANG Junxiong, HAN Li, XU Zhilan, et al. Estimation and variation of actual evapotranspiration of Beijing region based on Budyko theory[J]. Journal of Water Resources and Water Engineering, 2020, 31(3): 1-7. (in Chinese)

    HUANG Junxiong, HAN Li, XU Zhilan, et al. Estimation and variation of actual evapotranspiration of Beijing region based on Budyko theory[J]. Journal of Water Resources and Water Engineering, 2020, 31(3): 1-7. (in Chinese))
    [26] MARTENS B, MIRALLES D G, LIEVENS H, et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture[J]. Geoscientific Model Development, 2017, 10(5): 1903-1925. doi:  10.5194/gmd-10-1903-2017
    [27] 王高杰, 黄进良, 肖飞, 等. 基于关联性及趋势性分析的AVHRR NDVI及MODIS NDVI数据产品比较[J]. 长江流域资源与环境,2018,27(5):1143-1151. (WANG Gaojie, HUANG Jinliang, XIAO Fei, et al. Comparison of AVHRR NDVI and MODIS NDVI data products based on association and trend analysis[J]. Resources and Environment in the Yangtze Basin, 2018, 27(5): 1143-1151. (in Chinese) doi:  10.11870/cjlyzyyhj201805021

    (WANG Gaojie, HUANG Jinliang, XIAO Fei, et al. Comparison of AVHRR NDVI and MODIS NDVI data products based on association and trend analysis[J]. Resources and Environment in the Yangtze Basin, 2018, 27(5): 1143-1151. (in Chinese) doi:  10.11870/cjlyzyyhj201805021
    [28] 管晓祥, 张建云, 鞠琴, 等. 多种方法在水文关键要素一致性检验中的比较[J]. 华北水利水电大学学报(自然科学版),2018,39(2):51-56. (GUAN Xiaoxiang, ZHANG Jianyun, JU Qin, et al. Comparison of consistency testing for key hydrological elements by using multiple statistical methods[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2018, 39(2): 51-56. (in Chinese)

    (GUAN Xiaoxiang, ZHANG Jianyun, JU Qin, et al. Comparison of consistency testing for key hydrological elements by using multiple statistical methods[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2018, 39(2): 51-56. (in Chinese)
    [29] 邹磊, 夏军, 马细霞, 等. 潜在蒸散发量估算方法在河南省的适用性分析[J]. 水文,2014,34(3):17-23. (ZOU Lei, XIA Jun, MA Xixia, et al. Applicability of potential evapotranspiration methods in Henan province[J]. Journal of China Hydrology, 2014, 34(3): 17-23. (in Chinese) doi:  10.3969/j.issn.1000-0852.2014.03.004

    (ZOU Lei, XIA Jun, MA Xixia, et al. Applicability of potential evapotranspiration methods in Henan province[J]. Journal of China Hydrology, 2014, 34(3): 17-23. (in Chinese) doi:  10.3969/j.issn.1000-0852.2014.03.004
    [30] 王雅舒, 李小雁, 石芳忠, 等. 退耕还林还草工程加剧黄土高原退耕区蒸散发[J]. 科学通报,2019,64(5/6):588-599. (WANG Yashu, LI Xiaoyan, SHI Fangzhong, et al. The grain for green project intensifies evapotranspiration in the revegetation area of the Loess Plateau in China[J]. Chinese Science Bulletin, 2019, 64(5/6): 588-599. (in Chinese)

    (WANG Yashu, LI Xiaoyan, SHI Fangzhong, et al. The grain for green project intensifies evapotranspiration in the revegetation area of the Loess Plateau in China[J]. Chinese Science Bulletin, 2019, 64(5/6): 588-599. (in Chinese)
    [31] 王焕, 梅再美. 贵州省地表蒸散发时空变化及其与气候因子的关系[J]. 水土保持研究,2020,27(5):221-229. (WANG Huan, MEI Zaimei. Spatiotemporal changes of evapotranspiration and their relationship with climate factors in Guizhou province[J]. Research of Soil and Water Conservation, 2020, 27(5): 221-229. (in Chinese)

    WANG Huan, MEI Zaimei. Spatiotemporal changes of evapotranspiration and their relationship with climate factors in Guizhou province[J]. Research of Soil and Water Conservation, 2020, 27(5): 221-229. (in Chinese)
  • [1] 喻志强, 曹浩, 王正勇, 程卫帅.  长江经济带生态系统健康评估及时空变化特征 . 水利水运工程学报, 2022, (4): 28-36. doi: 10.12170/20200519001
    [2] 刘玄, 唐培军, 吴同帅, 冯忠伦, 刁艳芳, 王刚.  山东省极端气候指数变化特征研究 . 水利水运工程学报, 2022, (2): 40-50. doi: 10.12170/20210722001
    [3] 张之颖, 张辉, 章静, 缪丽娟.  1965—2013年中国用水量的时空演变 . 水利水运工程学报, 2022, (2): 11-20. doi: 10.12170/20210428002
    [4] 贾雨凡, 杨勤丽, 胡非池, 鞠琴, 王国庆.  变化环境下的水源涵养能力评估研究进展 . 水利水运工程学报, 2022, (1): 37-47. doi: 10.12170/20210820001
    [5] 杨艳娟, 陈跃浩, 陈思宁, 熊明明.  海河流域旱涝急转事件的时空演变特征 . 水利水运工程学报, 2021, (6): 1-10. doi: 10.12170/20210114001
    [6] 刘杰, 程海峰, 韩露, 叶婷婷, 王珍珍.  流域水沙变化和人类活动对长江口河槽演变的影响 . 水利水运工程学报, 2021, (2): 1-9. doi: 10.12170/20200313001
    [7] 王子龙, 刘莹, 姜秋香, 李世强, 柴迅, 何馨.  黑龙江省参考作物蒸散量变化及气象因子分析 . 水利水运工程学报, 2021, (2): 46-56. doi: 10.12170/20200831003
    [8] 姚原, 顾正华, 李云, 辜樵亚, 范子武.  森林覆盖率变化对流域洪水特性影响的数值模拟 . 水利水运工程学报, 2020, (1): 9-15. doi: 10.12170/20190501003
    [9] 雒翠, 刘勇, 朱晓庆, 付汉秀.  深圳市近57年来降水时空演变特征分析 . 水利水运工程学报, 2018, (3): 24-31. doi: 10.16198/j.cnki.1009-640X.2018.03.004
    [10] 张亮亮, 曹永强, 朱明明.  近50年辽宁省大雨与暴雨时空变化特征分析 . 水利水运工程学报, 2017, (1): 49-56. doi: 10.16198/j.cnki.1009-640X.2017.01.008
    [11] 夏威夷, 赵晓冬, 张新周.  椒江河口径、潮流变化对含沙量时空分布的影响 . 水利水运工程学报, 2016, (3): 35-45.
    [12] 高树飞, 贡金鑫, 冯云芬.  高桩码头Pushover分析影响因素研究 . 水利水运工程学报, 2015, (5): 1-14.
    [13] 刘艳丽, 王国庆, 金君良, 鲍振鑫, 刘翠善.  基于Budyko假设的环境变化对流域径流影响的界定 . 水利水运工程学报, 2014, (6): 1-8.
    [14] 王俊杰, 卢孝志, 邱珍锋, 梁越.  粗粒土渗透系数影响因素试验研究 . 水利水运工程学报, 2013, (6): 16-20.
    [15] 邓思思, David Z Zhu(朱志伟).  河流底泥耗氧量测量方法及耗氧量影响因素 . 水利水运工程学报, 2013, (4): 60-66.
    [16] 杨云平,李义天,王冬,韩剑桥.  长江口悬沙有效沉速时空变化规律 . 水利水运工程学报, 2012, (5): 24-29.
    [17] 丁伟,唐洪武,戴文鸿,肖洋.  涉河桥梁阻水影响因素研究 . 水利水运工程学报, 2011, (4): -.
    [18] 刘晓平,卢陈,王崇宇,向黎.  遮帘桩工作性状影响因素分析 . 水利水运工程学报, 2010, (1): -.
    [19] 莫思平,李越,卢素兰.  广州水道咸潮影响因素分析 . 水利水运工程学报, 2007, (4): 36-42.
    [20] 曾友金,章为民,王年香,徐光明.  超长单桩轴向刚度的计算及其影响因素 . 水利水运工程学报, 2003, (3): 32-37.
  • 加载中
图(8)
计量
  • 文章访问数:  176
  • HTML全文浏览量:  108
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-30
  • 网络出版日期:  2022-02-22
  • 刊出日期:  2022-07-03

/

返回文章
返回