Simulating the PCC pile composite foundation for centrifuge modelling and pile-soil interaction
-
摘要: 针对现有刚性桩复合地基离心模型试验技术的诸多局限性,综合考虑模型在材料、几何及桩土接触上的相似,首次设计了PCC桩复合地基离心模型试验并探讨了模型制备方法。配合专用切削、取土及回填试验器材,可以整齐高效地实现削土刮平、引孔取土、压桩就位和桩内回填操作,将常重力场下模型制备引起的扰动最小化,优化PCC桩复合地基离心模型制作过程。设计并开展反映本次离心模型中桩土摩擦接触特性的直剪试验,结果表明,离心模型中的桩帽与路堤砂、粗糙化的模型桩与软土层及下卧层的接触面摩尔-库伦摩擦角取值均在合理范围内,能够较好地代表PCC桩的桩-土接触特性。Abstract: The centrifuge modelling of PCC pile composite foundation is designed for the first time to consider the similarity of material, geometry and pile-soil interaction. The model preparation method which can eliminate many limitations of the existing centrifugal modelling technology of rigid pile composite foundation is well proposed. With special cutting, extraction and backfilling equipment, the operation of soil scraping and extraction, pile driving and backfilling can be realized neatly and efficiently. Therefore, the model preparation disturbance in 1g field can be minimized, and the centrifugal modelling of PCC pile composite foundation is well optimized. The values of Mohr-Coulomb interface friction angle of pile cap versus embankment sand, roughened model pile versus soft soil, and roughened model pile versus underlying soil derived from the direct shear test results are all within a reasonable range, and can reflect the pile-soil contact characteristics of cast-in-situ concrete piles in a reasonable way.
-
表 1 离心模型试验土样参数
Table 1. Soil sample parameters in centrifugal model test
土样 液限/% 塑限/% 目标强度/kPa 目标密度/(g·cm−3) 原型厚度/m 模型厚度/mm 土性 路堤砂 / / / 1.97 6.0 100 粉细砂+铁矿粉 软土层(饱和) 41 20 20 1.90 9.6 160 黏土 下卧层(饱和) 29 16 40 2.00 9.0 150 粉质黏土 表 2 接触面直剪试验参数
Table 2. Direct shear test parameters of pile-soil interface
土层 初始含水率/% 上覆荷载/kPa 剪切速率/(mm·min−1) 剪切位移/mm 摩擦系数 摩擦角/° 有效内摩擦角/° δ/φ' 路堤砂 3 50,100,150,200 1.0 30 0.64 33 41 0.80 软土 31 40,70,100,130 0.5 10 0.46 25 29 0.86 下卧层 23 40,80,120,160 0.5 10 0.58 30 33 0.91 -
[1] 刘汉龙. 岩土工程技术创新方法与实践[J]. 岩土工程学报,2013,35(1):34-58. (LIU Hanlong. Technological innovation methods and practices in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 34-58. (in Chinese) [2] 中华人民共和国住房和城乡建设部. 现浇混凝土大直径管桩复合地基技术规程: JGJ/T 213—2010[S]. 北京: 中国建筑工业出版社, 2010. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical specification for composite foundation of cast-in-place: JGJ/T 213—2010[S]. Beijing: China Architecture & Building Press, 2010. (in Chinese) [3] ZHUANG Y, ELLIS E A, YU H S. Three-dimensional finite-element analysis of arching in a piled embankment[J]. Géotechnique, 2012, 62(12): 1127-1131. doi: 10.1680/geot.9.P.113 [4] ARIYARATHNE P, LIYANAPATHIRANA D S. Review of existing design methods for geosynthetic-reinforced pile-supported embankments[J]. Soils and Foundations, 2015, 55(1): 17-34. doi: 10.1016/j.sandf.2014.12.002 [5] 《岩土离心模拟技术的原理和工程应用》编委会. 岩土离心模拟技术的原理和工程应用[M]. 武汉: 长江出版社, 2011. The Editorial Board of Principle and Engineering Application of Centrifugal Simulation Technology. Principle and engineering application of centrifugal simulation technology[M]. Wuhan: Changjiang Press, 2011. (in Chinese) [6] YE G B, ZHANG Q W, ZHANG Z, et al. Centrifugal modeling of a composite foundation combined with soil-cement columns and prefabricated vertical drains[J]. Soils and Foundations, 2015, 55(5): 1259-1269. doi: 10.1016/j.sandf.2015.09.024 [7] 李连祥, 黄佳佳, 符庆宏, 等. 不同置换率复合地基力学性状附加荷载影响规律离心试验研究[J]. 岩土力学,2017,38(增刊1):131-139. (LI Lianxiang, HUANG Jiajia, FU Qinghong, et al. Centrifuge experimental study of mechanical properties of composite foundation with different replacement rates under additional load[J]. Rock and Soil Mechanics, 2017, 38(Suppl1): 131-139. (in Chinese) [8] 张树明, 蒋关鲁, 廖祎来, 等. 加固范围及边坡坡率对CFG桩-网复合地基受力变形特性影响分析[J]. 岩石力学与工程学报,2019,38(1):192-202. (ZHANG Shuming, JIANG Guanlu, LIAO Yilai, et al. Effect of the strengthening area and the slope rate on bearing and deforming behaviors of CFG pile-geogrid composite foundation[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(1): 192-202. (in Chinese) [9] LALLY D, NAUGHTON P. An investigation of the arching mechanism in a geotechnical centrifuge[C]//Proceedings of the 5th European Geosynthetics Congress Organized. Valencia: IGS, 2012: 127-132. [10] WANG C D, WANG B L, GUO P J, et al. Experimental analysis on settlement controlling of geogrid-reinforced pile-raft-supported embankments in high-speed railway[J]. Acta Geotechnica, 2015, 10(2): 231-242. doi: 10.1007/s11440-013-0288-6 [11] BLANC M, RAULT G, THOREL L, et al. Centrifuge investigation of load transfer mechanisms in a granular mattress above a rigid inclusions network[J]. Geotextiles and Geomembranes, 2013, 36: 92-105. doi: 10.1016/j.geotexmem.2012.12.001 [12] ELLIS E, ASLAM R. Arching in piled embankments: comparison of centrifuge tests and predictive methods-part 1 of 2[J]. Ground Engineering, 2009, 42(6): 34-38. [13] KITAZUME M, OKANO K, MIYAJIMA S. Centrifuge model tests on failure envelope of column type deep mixing method improved ground[J]. Soils and Foundations, 2000, 40(4): 43-55. doi: 10.3208/sandf.40.4_43 [14] GIROUT R, BLANC M, THOREL L, et al. Geosynthetic reinforcement of pile-supported embankments[J]. Geosynthetics International, 2018, 25(1): 37-49. doi: 10.1680/jgein.17.00032 [15] OKYAY U S, DIAS D, THOREL L, et al. Centrifuge modeling of a pile-supported granular earth-platform[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(2): 04013015. doi: 10.1061/(ASCE)GT.1943-5606.0001004 [16] FAGUNDES D F, ALMEIDA M S S, THOREL L, et al. Load transfer mechanism and deformation of reinforced piled embankments[J]. Geotextiles and Geomembranes, 2017, 45(2): 1-10. doi: 10.1016/j.geotexmem.2016.11.002 [17] 刘飞成, 张建经. 斜坡基底软土桩-网复合地基变形特性离心试验研究[J]. 岩石力学与工程学报,2018,37(1):209-219. (LIU Feicheng, ZHANG Jianjing. Centrifuge test on deformation characteristics of pile-geogrid composite foundation in soft soil under slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 209-219. (in Chinese) [18] 费康, 刘汉龙, 高玉峰, 等. 现浇混凝土薄壁管桩的荷载传递机理[J]. 岩土力学,2004,25(5):764-768. (FEI Kang, LIU Hanlong, GAO Yufeng, et al. Load transfer mechanism for field pour concrete thin wall cased pile (PCC)[J]. Rock and Soil Mechanics, 2004, 25(5): 764-768. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.05.019 [19] 姜彦彬, 何宁, 林志强, 等. 路堤深厚软基管桩复合地基数值模拟[J]. 水利水运工程学报,2018(2):43-51. (JIANG Yanbin, HE Ning, LIN Zhiqiang, et al. Numerical simulation of pipe pile composite foundation of deep soft foundation under embankment[J]. Hydro-Science and Engineering, 2018(2): 43-51. (in Chinese) [20] 中华人民共和国交通部. 公路工程土工合成材料试验规程: JTG E 50—2006[S]. 北京: 人民交通出版社, 2006. Ministry of Communications of the People's Republic of China. Test methods of geosynthetics for highway engineering: JTG E 50—2006[S]. Beijing: China Communications Press, 2006. (in Chinese) [21] 中华人民共和国水利部. 土工合成材料测试规程: SL 235—2012[S]. 北京: 中国水利水电出版社, 2012. Ministry of Water Resources of the People's Republic of China. Specification for test and measurement of geosynthetics: SL 235—2012[S]. Beijing: China Water & Power Press, 2012. (in Chinese) [22] 胡贺松, 陈晓斌, 唐孟雄, 等. 随钻跟管桩桩-土接触面作用机制大型直剪试验研究[J]. 岩土力学,2018,39(12):4325-4334. (HU Hesong, CHEN Xiaobin, TANG Mengxiong, et al. Investigation on shearing failure mechanism for DPC pile-soil interface in large-scale direct shear tests[J]. Rock and Soil Mechanics, 2018, 39(12): 4325-4334. (in Chinese) [23] 龙尧, 张家生, 陈俊桦. 结构接触面剪切特性及软硬化损伤模型[J]. 华南理工大学学报(自然科学版),2016,44(12):128-134. (LONG Yao, ZHANG Jiasheng, CHEN Junhua. Shear characteristics of structure interface and its strain-softening and hardening damage model[J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(12): 128-134. (in Chinese) doi: 10.3969/j.issn.1000-565X.2016.12.018 [24] 郑刚, 李欣, 刘畅, 等. 考虑桩土相互作用的双排桩分析[J]. 建筑结构学报,2004,25(1):99-106. (ZHENG Gang, LI Xin, LIU Chang, et al. Analysis of double-row piles in consideration of the pile-soil interaction[J]. Journal of Building Structures, 2004, 25(1): 99-106. (in Chinese) doi: 10.3321/j.issn:1000-6869.2004.01.014 [25] 曹卫平. 桩承式路堤土拱效应及基于性能的设计方法研究[D]. 杭州: 浙江大学, 2007. CAO Weiping. Study on soil arching and performance-based design method for piled reinforced embankments[D]. Hangzhou: Zhejiang University, 2007. (in Chinese) [26] POTYONDY J G. Skin friction between various soils and construction materials[J]. Géotechnique, 1961, 11(4): 339-353. doi: 10.1680/geot.1961.11.4.339 [27] 张明义, 白晓宇, 高强, 等. 黏性土中桩-土界面受力机制室内试验研究[J]. 岩土力学,2017,38(8):2167-2174. (ZHANG Mingyi, BAI Xiaoyu, GAO Qiang, et al. Experimental study on interfacial bearing mechanism of piles in cohesive soil[J]. Rock and Soil Mechanics, 2017, 38(8): 2167-2174. (in Chinese) [28] 刘学增, 朱合华. 上海典型土层与混凝土接触特性的试验研究[J]. 同济大学学报(自然科学版),2004,32(5):601-606. (LIU Xuezeng, ZHU Hehua. Experiment on interaction between typical soils in Shanghai and concrete[J]. Journal of Tongji University (Natural Science), 2004, 32(5): 601-606. (in Chinese) doi: 10.3321/j.issn:0253-374X.2004.05.009 [29] 卢廷浩, 王伟, 王晓妮. 土与结构接触界面改进直剪试验研究[J]. 沈阳建筑大学学报(自然科学版),2006,22(1):82-85, 99. (LU Tinghao, WANG Wei, WANG Xiaoni. Experimental study on soil-structure contact surface behavior by improved direct shear tests[J]. Journal of Shenyang Jianzhu University (Natural Science), 2006, 22(1): 82-85, 99. (in Chinese) -