留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PCC桩复合地基离心模型制备及桩土接触模拟

姜彦彬 何宁 耿之周 蔡忍 任国峰 石北啸

姜彦彬,何宁,耿之周,等. PCC桩复合地基离心模型制备及桩土接触模拟[J]. 水利水运工程学报,2020(2):91-98 doi:  10.12170/20190121001
引用本文: 姜彦彬,何宁,耿之周,等. PCC桩复合地基离心模型制备及桩土接触模拟[J]. 水利水运工程学报,2020(2):91-98 doi:  10.12170/20190121001
(JIANG Yanbin, HE Ning, GENG Zhizhou, et al. Simulating the PCC pile composite foundation for centrifuge modelling and pile-soil interaction[J]. Hydro-Science and Engineering, 2020(2): 91-98. (in Chinese)) doi:  10.12170/20190121001
Citation: (JIANG Yanbin, HE Ning, GENG Zhizhou, et al. Simulating the PCC pile composite foundation for centrifuge modelling and pile-soil interaction[J]. Hydro-Science and Engineering, 2020(2): 91-98. (in Chinese)) doi:  10.12170/20190121001

PCC桩复合地基离心模型制备及桩土接触模拟

doi: 10.12170/20190121001
基金项目: 国家重点研发计划课题资助项目(2018YFC1508505,2017YFC0404801);国家自然科学基金面上项目(51579152,51679149);中央级公益性科研院所基本科研业务费专项基金资助项目(Y317008);国家留学基金资助项目(CSC No. 201808320413)
详细信息
    作者简介:

    姜彦彬(1989—),男,山东临沂人,博士研究生,主要从事地基处理方面的研究。E-mail:tumujyb@163.com

  • 中图分类号: TU472

Simulating the PCC pile composite foundation for centrifuge modelling and pile-soil interaction

  • 摘要: 针对现有刚性桩复合地基离心模型试验技术的诸多局限性,综合考虑模型在材料、几何及桩土接触上的相似,首次设计了PCC桩复合地基离心模型试验并探讨了模型制备方法。配合专用切削、取土及回填试验器材,可以整齐高效地实现削土刮平、引孔取土、压桩就位和桩内回填操作,将常重力场下模型制备引起的扰动最小化,优化PCC桩复合地基离心模型制作过程。设计并开展反映本次离心模型中桩土摩擦接触特性的直剪试验,结果表明,离心模型中的桩帽与路堤砂、粗糙化的模型桩与软土层及下卧层的接触面摩尔-库伦摩擦角取值均在合理范围内,能够较好地代表PCC桩的桩-土接触特性。
  • 图  1  路堤下PCC桩复合地基离心模型

    Figure  1.  Centrifugal model of PCC pile composite foundation under embankment

    图  2  引孔插桩操作示意

    Figure  2.  Sketch of driving PCC model piles

    图  3  模型桩实物

    Figure  3.  Pictures of model pile

    图  4  桩土接触面直剪试验器材

    Figure  4.  Equipment and materials for pile-soil interface direct shear test

    图  5  剪应力与剪切位移关系曲线

    Figure  5.  Shear stress versus shear displacement

    图  6  最大剪应力与法向应力线性关系

    Figure  6.  Linear relationship between maximum shear stress and normal stress

    表  1  离心模型试验土样参数

    Table  1.   Soil sample parameters in centrifugal model test

    土样液限/%塑限/%目标强度/kPa目标密度/(g·cm−3
    原型厚度/m模型厚度/mm土性
    路堤砂///1.976.0100粉细砂+铁矿粉
    软土层(饱和)4120201.909.6160黏土
    下卧层(饱和)2916402.009.0150粉质黏土
    下载: 导出CSV

    表  2  接触面直剪试验参数

    Table  2.   Direct shear test parameters of pile-soil interface

    土层初始含水率/%上覆荷载/kPa剪切速率/(mm·min−1)剪切位移/mm摩擦系数摩擦角/°有效内摩擦角/°δ/φ'
    路堤砂350,100,150,2001.0300.6433410.80
    软土3140,70,100,1300.5100.4625290.86
    下卧层2340,80,120,1600.5100.5830330.91
    下载: 导出CSV
  • [1] 刘汉龙. 岩土工程技术创新方法与实践[J]. 岩土工程学报,2013,35(1):34-58. (LIU Hanlong. Technological innovation methods and practices in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 34-58. (in Chinese)
    [2] 中华人民共和国住房和城乡建设部. 现浇混凝土大直径管桩复合地基技术规程: JGJ/T 213—2010[S]. 北京: 中国建筑工业出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical specification for composite foundation of cast-in-place: JGJ/T 213—2010[S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
    [3] ZHUANG Y, ELLIS E A, YU H S. Three-dimensional finite-element analysis of arching in a piled embankment[J]. Géotechnique, 2012, 62(12): 1127-1131. doi:  10.1680/geot.9.P.113
    [4] ARIYARATHNE P, LIYANAPATHIRANA D S. Review of existing design methods for geosynthetic-reinforced pile-supported embankments[J]. Soils and Foundations, 2015, 55(1): 17-34. doi:  10.1016/j.sandf.2014.12.002
    [5] 《岩土离心模拟技术的原理和工程应用》编委会. 岩土离心模拟技术的原理和工程应用[M]. 武汉: 长江出版社, 2011.

    The Editorial Board of Principle and Engineering Application of Centrifugal Simulation Technology. Principle and engineering application of centrifugal simulation technology[M]. Wuhan: Changjiang Press, 2011. (in Chinese)
    [6] YE G B, ZHANG Q W, ZHANG Z, et al. Centrifugal modeling of a composite foundation combined with soil-cement columns and prefabricated vertical drains[J]. Soils and Foundations, 2015, 55(5): 1259-1269. doi:  10.1016/j.sandf.2015.09.024
    [7] 李连祥, 黄佳佳, 符庆宏, 等. 不同置换率复合地基力学性状附加荷载影响规律离心试验研究[J]. 岩土力学,2017,38(增刊1):131-139. (LI Lianxiang, HUANG Jiajia, FU Qinghong, et al. Centrifuge experimental study of mechanical properties of composite foundation with different replacement rates under additional load[J]. Rock and Soil Mechanics, 2017, 38(Suppl1): 131-139. (in Chinese)
    [8] 张树明, 蒋关鲁, 廖祎来, 等. 加固范围及边坡坡率对CFG桩-网复合地基受力变形特性影响分析[J]. 岩石力学与工程学报,2019,38(1):192-202. (ZHANG Shuming, JIANG Guanlu, LIAO Yilai, et al. Effect of the strengthening area and the slope rate on bearing and deforming behaviors of CFG pile-geogrid composite foundation[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(1): 192-202. (in Chinese)
    [9] LALLY D, NAUGHTON P. An investigation of the arching mechanism in a geotechnical centrifuge[C]//Proceedings of the 5th European Geosynthetics Congress Organized. Valencia: IGS, 2012: 127-132.
    [10] WANG C D, WANG B L, GUO P J, et al. Experimental analysis on settlement controlling of geogrid-reinforced pile-raft-supported embankments in high-speed railway[J]. Acta Geotechnica, 2015, 10(2): 231-242. doi:  10.1007/s11440-013-0288-6
    [11] BLANC M, RAULT G, THOREL L, et al. Centrifuge investigation of load transfer mechanisms in a granular mattress above a rigid inclusions network[J]. Geotextiles and Geomembranes, 2013, 36: 92-105. doi:  10.1016/j.geotexmem.2012.12.001
    [12] ELLIS E, ASLAM R. Arching in piled embankments: comparison of centrifuge tests and predictive methods-part 1 of 2[J]. Ground Engineering, 2009, 42(6): 34-38.
    [13] KITAZUME M, OKANO K, MIYAJIMA S. Centrifuge model tests on failure envelope of column type deep mixing method improved ground[J]. Soils and Foundations, 2000, 40(4): 43-55. doi:  10.3208/sandf.40.4_43
    [14] GIROUT R, BLANC M, THOREL L, et al. Geosynthetic reinforcement of pile-supported embankments[J]. Geosynthetics International, 2018, 25(1): 37-49. doi:  10.1680/jgein.17.00032
    [15] OKYAY U S, DIAS D, THOREL L, et al. Centrifuge modeling of a pile-supported granular earth-platform[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(2): 04013015. doi:  10.1061/(ASCE)GT.1943-5606.0001004
    [16] FAGUNDES D F, ALMEIDA M S S, THOREL L, et al. Load transfer mechanism and deformation of reinforced piled embankments[J]. Geotextiles and Geomembranes, 2017, 45(2): 1-10. doi:  10.1016/j.geotexmem.2016.11.002
    [17] 刘飞成, 张建经. 斜坡基底软土桩-网复合地基变形特性离心试验研究[J]. 岩石力学与工程学报,2018,37(1):209-219. (LIU Feicheng, ZHANG Jianjing. Centrifuge test on deformation characteristics of pile-geogrid composite foundation in soft soil under slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 209-219. (in Chinese)
    [18] 费康, 刘汉龙, 高玉峰, 等. 现浇混凝土薄壁管桩的荷载传递机理[J]. 岩土力学,2004,25(5):764-768. (FEI Kang, LIU Hanlong, GAO Yufeng, et al. Load transfer mechanism for field pour concrete thin wall cased pile (PCC)[J]. Rock and Soil Mechanics, 2004, 25(5): 764-768. (in Chinese) doi:  10.3969/j.issn.1000-7598.2004.05.019
    [19] 姜彦彬, 何宁, 林志强, 等. 路堤深厚软基管桩复合地基数值模拟[J]. 水利水运工程学报,2018(2):43-51. (JIANG Yanbin, HE Ning, LIN Zhiqiang, et al. Numerical simulation of pipe pile composite foundation of deep soft foundation under embankment[J]. Hydro-Science and Engineering, 2018(2): 43-51. (in Chinese)
    [20] 中华人民共和国交通部. 公路工程土工合成材料试验规程: JTG E 50—2006[S]. 北京: 人民交通出版社, 2006.

    Ministry of Communications of the People's Republic of China. Test methods of geosynthetics for highway engineering: JTG E 50—2006[S]. Beijing: China Communications Press, 2006. (in Chinese)
    [21] 中华人民共和国水利部. 土工合成材料测试规程: SL 235—2012[S]. 北京: 中国水利水电出版社, 2012.

    Ministry of Water Resources of the People's Republic of China. Specification for test and measurement of geosynthetics: SL 235—2012[S]. Beijing: China Water & Power Press, 2012. (in Chinese)
    [22] 胡贺松, 陈晓斌, 唐孟雄, 等. 随钻跟管桩桩-土接触面作用机制大型直剪试验研究[J]. 岩土力学,2018,39(12):4325-4334. (HU Hesong, CHEN Xiaobin, TANG Mengxiong, et al. Investigation on shearing failure mechanism for DPC pile-soil interface in large-scale direct shear tests[J]. Rock and Soil Mechanics, 2018, 39(12): 4325-4334. (in Chinese)
    [23] 龙尧, 张家生, 陈俊桦. 结构接触面剪切特性及软硬化损伤模型[J]. 华南理工大学学报(自然科学版),2016,44(12):128-134. (LONG Yao, ZHANG Jiasheng, CHEN Junhua. Shear characteristics of structure interface and its strain-softening and hardening damage model[J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(12): 128-134. (in Chinese) doi:  10.3969/j.issn.1000-565X.2016.12.018
    [24] 郑刚, 李欣, 刘畅, 等. 考虑桩土相互作用的双排桩分析[J]. 建筑结构学报,2004,25(1):99-106. (ZHENG Gang, LI Xin, LIU Chang, et al. Analysis of double-row piles in consideration of the pile-soil interaction[J]. Journal of Building Structures, 2004, 25(1): 99-106. (in Chinese) doi:  10.3321/j.issn:1000-6869.2004.01.014
    [25] 曹卫平. 桩承式路堤土拱效应及基于性能的设计方法研究[D]. 杭州: 浙江大学, 2007.

    CAO Weiping. Study on soil arching and performance-based design method for piled reinforced embankments[D]. Hangzhou: Zhejiang University, 2007. (in Chinese)
    [26] POTYONDY J G. Skin friction between various soils and construction materials[J]. Géotechnique, 1961, 11(4): 339-353. doi:  10.1680/geot.1961.11.4.339
    [27] 张明义, 白晓宇, 高强, 等. 黏性土中桩-土界面受力机制室内试验研究[J]. 岩土力学,2017,38(8):2167-2174. (ZHANG Mingyi, BAI Xiaoyu, GAO Qiang, et al. Experimental study on interfacial bearing mechanism of piles in cohesive soil[J]. Rock and Soil Mechanics, 2017, 38(8): 2167-2174. (in Chinese)
    [28] 刘学增, 朱合华. 上海典型土层与混凝土接触特性的试验研究[J]. 同济大学学报(自然科学版),2004,32(5):601-606. (LIU Xuezeng, ZHU Hehua. Experiment on interaction between typical soils in Shanghai and concrete[J]. Journal of Tongji University (Natural Science), 2004, 32(5): 601-606. (in Chinese) doi:  10.3321/j.issn:0253-374X.2004.05.009
    [29] 卢廷浩, 王伟, 王晓妮. 土与结构接触界面改进直剪试验研究[J]. 沈阳建筑大学学报(自然科学版),2006,22(1):82-85, 99. (LU Tinghao, WANG Wei, WANG Xiaoni. Experimental study on soil-structure contact surface behavior by improved direct shear tests[J]. Journal of Shenyang Jianzhu University (Natural Science), 2006, 22(1): 82-85, 99. (in Chinese)
  • [1] 徐光明, 刘超, 林显才, 邓远经, 江丹强, 杜静.  散货码头堆场地基推移破坏离心模型试验研究 . 水利水运工程学报, 2023, (2): 96-103. doi: 10.12170/20220311001
    [2] 姜彦彬, 丁元芳, 钱亚俊, 倪政, 王艳芳.  刚性桩复合地基离心试验插桩制模研究 . 水利水运工程学报, 2023, (5): 1-8. doi: 10.12170/20220424003
    [3] 杨喜涛, 王建华, 范怡飞.  砂土中钻井船插桩对邻近群桩影响的模型试验 . 水利水运工程学报, 2020, (3): 75-81. doi: 10.12170/20190316001
    [4] 高维杰, 王建华, 田兆丰, 范怡飞.  砂土及黏土场地钻井船插桩对邻近桩的影响 . 水利水运工程学报, 2018, (5): 111-119. doi: 10.16198/j.cnki.1009-640X.2018.05.016
    [5] 徐光明, 任国峰, 顾行文, 蔡正银.  盐城港卸荷式地连墙结构码头离心模型试验 . 水利水运工程学报, 2018, (3): 48-56. doi: 10.16198/j.cnki.1009-640X.2018.03.007
    [6] 田兆丰, 王建华, 范怡飞.  钻井船插拔桩对邻近桩影响的模型试验 . 水利水运工程学报, 2018, (5): 41-47. doi: 10.16198/j.cnki.1009-640X.2018.05.006
    [7] 杨燕伟, 关云飞, 李锦涛.  混凝土芯砂石桩复合地基固结计算 . 水利水运工程学报, 2016, (3): 46-52.
    [8] 周元强, 白闰平, 邵 勤, 刘欣良.  碎石桩复合地基的液化判别方法 . 水利水运工程学报, 2014, (5): 87-94.
    [9] 李炜, 黄旭, 赵生校, 周永, 王淡善.  海上风机基础大直径加翼单桩常重力模型试验数值仿真 . 水利水运工程学报, 2013, (4): 6-11.
    [10] 何宁,娄炎,娄斌.  CFG桩复合地基加固桥头深厚软基 . 水利水运工程学报, 2010, (4): -.
    [11] 顾培,高长胜,杨守华,赵维炳.  加筋土挡墙离心模型试验研究 . 水利水运工程学报, 2010, (2): -.
    [12] 司玉军,曾友金,解占强,武文奎,李东青.  整体卸荷式板桩码头结构离心模型试验研究 . 水利水运工程学报, 2009, (3): -.
    [13] 李士林,徐光明.  单锚板桩结构码头离心模型试验研究 . 水利水运工程学报, 2008, (1): 67-72.
    [14] 李永江.  混合坝型衔接坝段协调变形离心模型试验与数值分析 . 水利水运工程学报, 2007, (4): 66-70.
    [15] 傅华,李国英.  堆石料与基岩面直剪试验 . 水利水运工程学报, 2003, (4): 37-40.
    [16] 盛崇文.  碎石桩复合地基设计施工中的若干经验 . 水利水运工程学报, 1990, (1): -.
    [17] 徐正栋,朱大铮,梁小山.  土工离心模型试验数据采集系统 . 水利水运工程学报, 1987, (4): -.
    [18] 郑培成,王盛源.  云南白药厂碎石桩地基试验 . 水利水运工程学报, 1986, (1): -.
    [19] 朱维新,陈绪禄.  南科院土工离心模型试验技术考察团访美 . 水利水运工程学报, 1984, (3): -.
    [20] 陈锦珍,郑国芳.  桩在砂土中承受水平荷载的模型试验研究 . 水利水运工程学报, 1983, (2): -.
  • 加载中
图(6) / 表 (2)
计量
  • 文章访问数:  597
  • HTML全文浏览量:  218
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-21
  • 网络出版日期:  2020-04-24
  • 刊出日期:  2020-04-01

/

返回文章
返回