Numerical analysis of wave run-up characteristics on dual non-submerged vertical cylinders system
-
摘要: 波浪爬升是近海构筑物和海洋平台结构设计中的重要参数。全面掌握波浪的爬升特性有利于结构的安全保证和优化。采用有限元方法建立了求解Berkhoff缓坡方程的数值模型,并计算了非淹没单个直立圆柱周围的波高分布,计算结果与解析解吻合很好。以非淹没双直立圆柱为研究对象,探讨了圆柱间距对波浪爬升的影响。结果表明:上游圆柱周围的波高分布曲线波动较大,但最大相对波高和最小相对波高的发生位置基本与单个圆柱的情况相同;当圆柱间距为1/4波长的奇数倍时,最小相对波高明显减小,圆柱肩部出现第二峰值;而当圆柱间距为1/4波长的偶数倍时,最小相对波高则明显增加,圆柱肩部出现第二谷值。下游圆柱周围的波高分布曲线与单个圆柱的情况相似,但波高相对较小。Abstract: Wave run-up is an important parameter in offshore structures and ocean platforms design. A comprehensive understanding of its characteristics benefits the structural safety and design optimization. In this study, a numerical model is set up to solve the mild slope equation proposed by Berkhoff using the finite element method. The computational results of wave height distribution around the single non-submerged vertical cylinder match with the analytical solutions very well, verifying the validity of the numerical model. Subsequently, the effect of the spacing between two cylinders on wave run-up is investigated by observing the dual non-submerged vertical cylinders system. The numerical results show that the curve of wave height distribution around the upstream cylinder has a big fluctuation. However, the positions of maximum and minimum wave heights are the same as those in the single cylinder case. When the spacings are odd times of 1/4 incident wavelength, the minimum wave height decreases obviously and the secondary peak appears on the shoulder of the cylinder; when the spacings are even times of 1/4 incident wavelength, the minimum wave height obviously increases and the secondary trough appears on the shoulder of the cylinder. The curve of wave height distribution around the downstream cylinder is similar but smaller than that in the single cylinder case.
-
表 1 下游圆柱波浪爬高最大值和最小值
Table 1. The maximum and minimum values of wave run-up around downstream cylinder
工况 S/L 最大相对波高 最小相对波高 工况 S/L 最大相对波高 最小相对波高 单个圆柱 / 1.801 0.517 5 2.25 1.672 0.467 1 1.25 1.609 0.444 6 2.50 1.754 0.491 2 1.50 1.749 0.485 7 2.75 1.684 0.473 3 1.75 1.649 0.456 8 3.00 1.754 0.490 4 2.00 1.754 0.491 -
[1] MACCAMY R C, FUCHS R A. Wave forces on piles: a diffraction theory[R]. Washington DC: US Army Corps of Engineers, Beach Erosion Board, 1954. [2] GALVIN C J, HALLERMEIER R J. Wave runup on vertical cylinders[C]//Proceedings of the 13th International Conference on Coastal Engineering. Vancouver, British Columbia, Canada: ASCE, 1972: 65-71. [3] NIEDZWECKI J M, DUGGAL A S. Wave runup and forces on cylinders in regular and random waves[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1992, 118(6): 615-634. doi: 10.1061/(ASCE)0733-950X(1992)118:6(615) [4] MORRIS-THOMAS M. An investigation into wave run-up on vertical surface piercing cylinders in monochromatic waves[D]. Stirling Hwy: The University of Western Australia, 2003. [5] 刘必劲, 傅丹娟, 张友权, 等. 浅浸没水平圆柱浮子波浪力计算研究[J]. 海洋工程, 2019, 37(4): 54-62. LIU Bijin, FU Danjuan, ZHANG Youquan, et al. Study on wave forces of partially immersed horizontal cylindrical float[J]. The Ocean Engineering, 2019, 37(4): 54-62. (in Chinese) [6] 高洋洋,张演明,刘彩,等.不同雷诺数下倾斜圆柱绕流三维数值模拟研究[J].海洋工程,2020,38(1):86-100. GAO Yangyang, ZHANG Yanming, LIU Cai, et al. Three-dimensional numerical simulation on flow past an inclined circular cylinder at different Reynolds numbers[J]. The Ocean Engineering, 2020,38(1):86-100.(in Chinese) [7] MORGAN G C J, ZANG J. Using the rasInterFoam CFD model for non-linear wave interaction with a cylinder[C]//Proceedings of the 21th International Offshore and Polar Engineering Conference. Beijing, China: International Society of Offshore and Polar Engineers, 2010. [8] 武昕竹, 柳淑学, 李金宣. 聚焦波浪与直立圆柱作用的数值模拟[J]. 水利水运工程学报,2015(6):31-39. (WU Xinzhu, LIU Shuxue, LI Jinxuan. Numerical simulation of interactions of focusing wave with a vertical cylinder[J]. Hydro-Science and Engineering, 2015(6): 31-39. (in Chinese) [9] 唐鹏, 于定勇, BAI Wei, et al. 海洋工程中直立圆柱波浪爬升问题的数值研究[J]. 中国海洋大学学报,2016,46(10):116-122. (TANG Peng, YU Dingyong, BAI Wei, et al. Numerical simulation of wave run-up on cylindrical offshore structures[J]. Periodical of Ocean University of China, 2016, 46(10): 116-122. (in Chinese) [10] 刘正浩, 万德成. 规则波下圆柱波浪爬升特性的数值研究[C]//吴有生, 袁寿其, 颜开. 第二十九届全国水动力学研讨会论文集(下册). 北京: 海洋出版社, 2018: 1163-1174. LIU Zhenghao, WAN Decheng. Numerical simulation of regular wave run-up on a circular cylinder[C]//WU Yousheng, YUAN Shouqi, YAN Kai. Proceedings of the 29th National Congress on Hydrodynamics. Beijing: China Ocean Press, 2018: 1163-1174. (in Chinese) [11] 吴昊, 朱际休, 廖斌, 等. 波浪对非淹没竖直圆柱作用的数值分析[J]. 安徽工程大学学报,2018,33(5):88-94. (WU Hao, ZHU Jixiu, LIAO Bin, et al. Numerical investigation on free surface waves past non-submerged vertical circular cylinders[J]. Journal of Anhui Polytechnic University, 2018, 33(5): 88-94. (in Chinese) doi: 10.3969/j.issn.2095-0977.2018.05.016 [12] BERKHOFF J C W. Computation of combined refraction-diffraction[C]//Proceedings of the 13th International Conference on Coastal Engineering. Vancouver, British Columbia, Canada: ASCE, 1972. [13] BOOIJ N. A note on the accuracy of the mild-slope equation[J]. Coastal Engineering, 1983, 7(3): 191-203. doi: 10.1016/0378-3839(83)90017-0 [14] HOUSTON J R. Combined refraction and diffraction of short waves using the finite element method[J]. Applied Ocean Research, 1981, 3(4): 163-170. doi: 10.1016/0141-1187(81)90058-4 [15] 赵明, 腾斌, 金生. 缓坡方程的有限元解[J]. 大连理工大学学报,2000,40(1):117-119. (ZHAO Ming, TENG Bin, JIN Sheng. Finite element solutions for mild slope equation[J]. Journal of Dalian University of Technology, 2000, 40(1): 117-119. (in Chinese) doi: 10.3321/j.issn:1000-8608.2000.01.033 -