Dynamic mechanical properties and failure criteria of concrete under true triaxial stress
-
摘要: 为研究混凝土结构处于复杂应力状态下的静动态力学特性,进行了不同应力比及加载速率下的真三轴压缩试验。对混凝土的强度特性和变形特性展开了深入分析,并基于八面体应力空间建立了考虑应变速率效应的真三轴动态破坏准则。结果表明:真三轴受压下的混凝土极限抗压强度随着应力比的增大而增大。随着应变速率的增加,应力比较低时,混凝土的极限抗压强度逐渐增大;应力比较高时,极限抗压强度先减小后增加。随着应变速率的增加,侧向变形曲线的破坏峰值点更明显;随着应力比的增大,侧应力较大方向上的变形越来越小。基于八面体应力空间建立的真三轴动态破坏准则表达式中包含3个率效应参数,经验证与试验数据吻合较好。Abstract: The true triaxial compression tests under different stress ratios and different loading rates are conducted to study the static and dynamic mechanical properties of concrete structures under complex stress conditions. The variations of concrete’s compressive strength and deformation characteristics are examined in depth. Based on the octahedral stress space, the true triaxial dynamic failure criterion of the concrete considering the rate effect is established. The results show that the ultimate compressive strength of concrete under true triaxial compression increases with the increase of stress ratio. At lower stress ratio, the ultimate compressive strength of concrete gradually increases with the increase of strain rate; at higher stress ratio, the ultimate compressive strength of concrete decreases firstly and then increases. The deformation on the lateral compression surface changes from compression failure to tensile failure in a shorter time with the increasing strain rate, and the deformation becomes smaller and smaller in the direction of greater lateral pressure with the increasing strain ratio. The expression of the true triaxial dynamic failure criterion based on the octahedral stress space contains three rate-effect parameters, which is verified to be in good agreement with the experimental data.
-
Key words:
- concrete /
- static and dynamic /
- three axial compression /
- strain rate /
- strength criterion
-
表 1 不同应变速率下混凝土的动态抗压强度
Table 1. Dynamic compressive strengths of concrete at different strain rates
${\sigma _1}:{\sigma _2}$ 不同应变速率下的极限抗压强度/MPa 10−5/s 10−4/s 10−3/s 10−2/s 1∶1 52.31(−/−) 54.49(−/4.17) 55.61(−/6.31) 58.78(−/12.37) 2∶1 60.61(15.87/−) 59.51(9.21/−1.81) 67.99(22.26/12.18) 69.76(18.68/15.10) 3∶1 70.16(34.12/−) 67.49(23.86/−3.81) 72.76(30.84/3.71) 83.21(41.56/18.60) 4∶1 72.19(38.00/−) 68.44(25.60/−5.19) 73.48(32.13/1.79) 94.36(60.53/30.71) 0(单轴) 36.65(−/−) 37.28(−/1.72) 38.92(−/4.45) 40.28(−/9.90) 注:表中括号内“/”前后数值分别表示极限抗压强度相对于1∶1下的增幅(%)和相对于10−5/s下的增幅(%)。 表 2 不同应变速率下破坏准则拟合参数值与相关系数
Table 2. Fitting parameters and correlation coefficients of failure criterion at different strain rates
应变速率/s−1 ${\alpha _{\dot \varepsilon }}$ ${\beta _{\dot \varepsilon }}$ ${\gamma _{\dot \varepsilon }}$ ${R^2}$ 10−5 −0.342 −1.039 0.164 0.983 10−4 −0.209 −0.958 0.172 0.972 10−3 −0.386 −1.231 0.101 0.978 10−2 −0.519 −1.494 0.031 0.993 -
[1] TSVETKOV K. Experimental and theoretical studies of strength and stress-strain properties of the concrete under conditions of complex stress-strain states with presence of tensile stresses from the effect of a single-shot dynamic load of the general form[C]//Proceedings of the 5th International Scientific Conference on Integration, Partnership and Innovation in Construction Science and Education 2016. Moscow, Russia: Curran Associates, Inc, 2016: 127-134. [2] SCHICKERT G, WINKLER H. Results of test concerning strength and strain of concrete subjected to multi-axial compressive stress[J]. Deutsche Ausschuss Fϋr Stahlbeton, 1977, 191: 2667-2698. [3] 孟顺意. 混凝土双轴动态试验研究[D]. 大连: 大连理工大学, 2010. MENG Shunyi. Experimental study on concrete under dynamic biaxial compressive[D]. Dalian: Dalian University of Technology, 2010. (in Chinese) [4] LEE S K, SONG Y C, HAN S H. Biaxial behavior of plain concrete of nuclear containment building[J]. Nuclear Engineering and Design, 2004, 227(2): 143-153. doi: 10.1016/j.nucengdes.2003.09.001 [5] 王怀亮. 双向应力下碾压混凝土动态力学性能[J]. 建筑材料学报,2015,18(5):847-851. (WANG Huailiang. Dynamic properties of RCC in biaxial stress states[J]. Journal of Building Materials, 2015, 18(5): 847-851. (in Chinese) doi: 10.3969/j.issn.1007-9629.2015.05.023 [6] 尚世明, 宋玉普. 混凝土双轴拉压动态强度及破坏准则试验[J]. 沈阳建筑大学学报(自然科学版),2012,28(5):782-787. (SHANG Shiming, SONG Yupu. Experimental study of concrete dynamic strength and failure criterion under biaxial tensile-compressive load[J]. Journal of Shenyang Jianzhu University (Natural Science), 2012, 28(5): 782-787. (in Chinese) [7] 商怀帅, 宋玉普. 不同水灰比混凝土冻融循环后双轴压试验研究[J]. 大连理工大学学报,2007,47(6):862-866. (SHANG Huaishuai, SONG Yupu. Experimental investigation on different w/c concrete under biaxial compression after freeze-thaw cycles[J]. Journal of Dalian University of Technology, 2007, 47(6): 862-866. (in Chinese) doi: 10.7511/dllgxb200706016 [8] 尚世明. 普通混凝土多轴动态性能试验研究[D]. 大连: 大连理工大学, 2013. SHANG Shiming. Experimental study on the multi-axial dynamic behavior of plain concrete[D]. Dalian: Dalian University of Technology, 2013. (in Chinese) [9] 闫东明, 林皋, 徐平. 三向应力状态下混凝土动态强度和变形特性研究[J]. 工程力学,2007,24(3):58-64. (YAN Dongming, LIN Gao, XU Ping. Dynamic strength and deformation of concrete in triaxial stress states[J]. Engineering Mechanics, 2007, 24(3): 58-64. (in Chinese) doi: 10.3969/j.issn.1000-4750.2007.03.010 [10] 田为, 彭刚, 陈学强, 等. 在有压水环境中的混凝土率效应特性研究[J]. 土木工程与管理学报,2014,31(4):50-54. (TIAN Wei, PENG Gang, CHEN Xueqiang, et al. Dynamic characteristic study of concrete under pressure of water environment[J]. Journal of Civil Engineering and Management, 2014, 31(4): 50-54. (in Chinese) doi: 10.3969/j.issn.2095-0985.2014.04.010 [11] 刘博文, 彭刚, 马小亮, 等. 水环境下混凝土动态抗压特性试验研究[J]. 硅酸盐通报,2016,35(11):3690-3696. (LIU Bowen, PENG Gang, MA Xiaoliang, et al. Experimental study on dynamic compressive properties of concrete under water environment[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(11): 3690-3696. (in Chinese) [12] 杨乃鑫, 陈灯红, 彭刚, 等. 循环荷载后围压水对混凝土力学特性影响[J]. 水利水运工程学报,2017(4):89-96. (YANG Naixin, CHEN Denghong, PENG Gang, et al. Mechanical properties of concrete under confining pressure after cyclic loading[J]. Hydro-Science and Engineering, 2017(4): 89-96. (in Chinese) [13] 施林林, 宋玉普, 沈璐, 等. 动态三轴压荷载历史对大骨料混凝土动态单轴抗压强度影响[J]. 大连理工大学学报,2014,54(5):543-550. (SHI Linlin, SONG Yupu, SHEN Lu, et al. Effect of dynamic triaxial compressive loading history on strength of dam concrete under dynamic uniaxial compression[J]. Journal of Dalian University of Technology, 2014, 54(5): 543-550. (in Chinese) doi: 10.7511/dllgxb201405010 [14] 宋玉普, 陈渊. 大骨料混凝土三轴受压动态强度试验研究[J]. 水利与建筑工程学报,2013,11(5):84-88. (SONG Yupu, CHEN Yuan. Experimental study on dynamic strength of large aggregate concrete under triaxial compression[J]. Journal of Water Resources and Architectural Engineering, 2013, 11(5): 84-88. (in Chinese) [15] 宋玉普, 段小亮, 施林林. 大骨料混凝土在动态三轴拉压压应力状态下的强度[J]. 建筑材料学报,2015,18(5):721-726. (SONG Yupu, DUAN Xiaoliang, SHI Linlin. Strength of large aggregate concrete under dynamic triaxial compression-compression-tension stress state[J]. Journal of Building Materials, 2015, 18(5): 721-726. (in Chinese) doi: 10.3969/j.issn.1007-9629.2015.05.001 [16] 宋玉普, 赵国藩. 复杂应力状态下混凝土的变形和强度特性[J]. 海洋工程, 1991, 9(2): 20-32. SONG Yupu, ZHAO Guofan. Behavior of deformation and strength of concrete under multiaxial stresses[J]. The Ocean Engineering, 1991, 9(2): 20-32. (in Chinese) [17] 中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程: JGJ 55—2011[S]. 北京: 中国建筑工业出版社, 2011. Ministry of Housing and Urban Rural Development of the People’s Republic of China. Specification for mix proportion design of ordinary concrete: JGJ 55—2011[S]. Beijing: China Architecture & Building Press, 2011. (in Chinese) [18] BRESLER B, PISTER K S. Strength of concrete under combined stresses[J]. ACI Structural Journal, 1958, 55(9): 321-345. -