留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

层结环境下刚性植被群对异重流影响的数值模拟

谢晓云 韩东睿 林颖典

谢晓云,韩东睿,林颖典. 层结环境下刚性植被群对异重流影响的数值模拟[J]. 水利水运工程学报,2022(1):77-88. doi:  10.12170/20210129003
引用本文: 谢晓云,韩东睿,林颖典. 层结环境下刚性植被群对异重流影响的数值模拟[J]. 水利水运工程学报,2022(1):77-88. doi:  10.12170/20210129003
(XIE Xiaoyun, HAN Dongrui, LIN Yingdian. Numerical simulations of the effect of rigid vegetation patch on motions of gravity current in linearly stratified environments[J]. Hydro-Science and Engineering, 2022(1): 77-88. (in Chinese)) doi:  10.12170/20210129003
Citation: (XIE Xiaoyun, HAN Dongrui, LIN Yingdian. Numerical simulations of the effect of rigid vegetation patch on motions of gravity current in linearly stratified environments[J]. Hydro-Science and Engineering, 2022(1): 77-88. (in Chinese)) doi:  10.12170/20210129003

层结环境下刚性植被群对异重流影响的数值模拟

doi: 10.12170/20210129003
基金项目: 国家重点研发计划资助项目(2017YFC0405205);浙江省自然科学基金资助项目(LY20A020009);中央高校基本科研业务费专项资金资助项目(2020QNA4038)
详细信息
    作者简介:

    谢晓云(1997—),男,江西赣州人,硕士研究生,主要从事异重流研究。E-mail:xyxie@zju.edu.cn

    通讯作者:

    林颖典(E-mail:kevinlin@zju.edu.cn

  • 中图分类号: TV145.21

Numerical simulations of the effect of rigid vegetation patch on motions of gravity current in linearly stratified environments

  • 摘要: 利用FLUENT软件模拟了层结环境下开闸式异重流通过刚性植被群的演变特性,使用二维大涡模拟,并结合用户自定义函数加入植被阻力效应,对异重流的头部速度、瞬时卷吸常数、势能转变,动能剖面变化等与环境水体层结度、植被群高度的关系进行相关分析。结果表明:层结环境会使异重流头部后期产生中性层入侵,但植被的存在会抑制此现象;在运动初期,异重流在低层结度环境时的头部速度比在高层结度环境的大,经过转变点,此趋势相反,而植被的存在会延迟这个转变点的出现,且转变点的出现随植被高度的增加而滞后;层结环境和植被都会抑制异重流的卷吸,但当这两种因素同时存在时,植被对异重流掺混抑制的影响起主要作用。异重流运动过程中,势能早期主要用于维持异重流前进,经过转变点后,大部分势能主要被不可逆掺混消耗,且植被和层结环境会将这个转变点提前。相同层结环境下,植被越高,异重流与环境流体间不可逆掺混引起的背景势能越不占优。层结环境会抑制断面处动能的多次波峰现象,但植被会促进该现象的发生。
  • 图  1  物理模型示意

    Figure  1.  Schematic diagram of physical model

    图  2  异重流头部位置随时间变化的数值研究与林颖典等试验结果[25]对比

    Figure  2.  Comparison of head position of gravity current with time between numerical and experimental results

    图  3  典型工况异重流的发展过程

    Figure  3.  Development processes of gravity current in typical cases

    图  4  异重流头部位置随流动时间的变化关系

    Figure  4.  Relationship between the front velocity of current and flow time

    图  5  异重流的瞬时卷吸常数随头部位置变化关系

    Figure  5.  Variation of entrainment parameter with front position of gravity current

    图  6  异重流无量纲总势能、背景势能和可用势能随头部位置变化关系

    Figure  6.  Variation of the dimensionless total potential energy, background potential energy and available potential energy with head position of gravity current

    图  7  不同工况下异重流特征断面处动能峰值变化

    Figure  7.  Kinetic energy profile at the characteristic section of density currents of different cases

    表  1  数值工况参数设置

    Table  1.   Parameters of numerical simulations

    组别$ {L}_{\text{v}} $/cm$ {H}_{\text{v}} $/cm$ S $
    N0 0 0 0
    N1 0 0 0.25
    N2 0 0 0.50
    N3 0 0 0.75
    S0 80 3 0
    S1 80 3 0.25
    S2 80 3 0.50
    S3 80 3 0.75
    E0 80 15 0
    E1 80 15 0.25
    E2 80 15 0.50
    E3 80 15 0.75
    下载: 导出CSV
  • [1] SIMPSON J E. Gravity currents in the laboratory, atmosphere, and ocean[J]. Annual Review of Fluid Mechanics, 1982, 14(1): 213-234. doi:  10.1146/annurev.fl.14.010182.001241
    [2] 高亚军, 陆永军, 李国斌. 黄河小浪底库区高含沙异重流的运动过程分析[J]. 水利水运工程学报,2008(2):60-66. (GAO Yajun, LU Yongjun, LI Guobin. Analysis on character of hyper-concentration density flow in Xiaolangdi Reservoir in the Yellow River[J]. Hydro-Science and Engineering, 2008(2): 60-66. (in Chinese) doi:  10.3969/j.issn.1009-640X.2008.02.010
    [3] 张翔, 邱秀云, 李琳, 等. 垂向异重流式分离鳃在静水中的集成试验[J]. 水利水运工程学报,2011(2):89-93. (ZHANG Xiang, QIU Xiuyun, LI Lin, et al. Integration experiments of vertical-component density flow water-sediment separation device in still water[J]. Hydro-Science and Engineering, 2011(2): 89-93. (in Chinese) doi:  10.3969/j.issn.1009-640X.2011.02.014
    [4] LI C W, ZHANG M L. Numerical modeling of shallow water flow around arrays of emerged cylinders[J]. Journal of Hydro-environment Research, 2010, 4(2): 115-121. doi:  10.1016/j.jher.2010.04.005
    [5] CHEN G, HUAI W X, HAN J, et al. Flow structure in partially vegetated rectangular channels[J]. Journal of Hydrodynamics, 2010, 22(4): 590-597. doi:  10.1016/S1001-6058(09)60092-5
    [6] HUPPERT D E, SIMPSON J E. The slumping of gravity currents[J]. Journal of Fluid Mechanics, 1980, 99(4): 785-799. doi:  10.1017/S0022112080000894
    [7] BEGHIN P, HOPFINGER E J, BRITTER R E. Gravitational convection from instantaneous sources on inclined boundaries[J]. Journal of Fluid Mechanics, 1981, 107: 407-422. doi:  10.1017/S0022112081001821
    [8] MAXWORTHY T, NOKES R I. Experiments on gravity currents propagating down slopes. Part 1. The release of a fixed volume of heavy fluid from an enclosed lock into an open channel[J]. Journal of Fluid Mechanics, 2007, 584: 433-453. doi:  10.1017/S0022112007006702
    [9] UNGARISH M. On gravity currents in a linearly stratified ambient: a generalization of Benjamin’s steady-state propagation results[J]. Journal of Fluid Mechanics, 2006, 548: 49-68. doi:  10.1017/S0022112005007421
    [10] OTTOLENGHI L, ADDUCE C, INGHILESI R, et al. Mixing in lock-release gravity currents propagating up a slope[J]. Physics of Fluids, 2016, 28(5): 056604. doi:  10.1063/1.4948760
    [11] OTTOLENGHI L, ADDUCE C, INGHILESI R, et al. Entrainment and mixing in unsteady gravity currents[J]. Journal of Hydraulic Research, 2016, 54(5): 541-557. doi:  10.1080/00221686.2016.1174961
    [12] STEENHAUER K, TOKYAY T, CONSTANTINESCU G. Dynamics and structure of planar gravity currents propagating down an inclined surface[J]. Physics of Fluids, 2017, 29(3): 036604. doi:  10.1063/1.4979063
    [13] NOURAZAR S, SAFAVI M. Two-dimensional large-eddy simulation of density-current flow propagating up a slope[J]. Journal of Hydraulic Engineering, 2017, 143(9): 04017035. doi:  10.1061/(ASCE)HY.1943-7900.0001329
    [14] TOKYAY T, CONSTANTINESCU G, MEIBURG E. Lock-exchange gravity currents with a high volume of release propagating over a periodic array of obstacles[J]. Journal of Fluid Mechanics, 2011, 672: 570-605. doi:  10.1017/S0022112010006312
    [15] TOKYAY T, CONSTANTINESCU G, GONZALEZ-JUEZ E, et al. Gravity currents propagating over periodic arrays of blunt obstacles: effect of the obstacle size[J]. Journal of Fluids and Structures, 2011, 27(5/6): 798-806. doi:  10.1016/j.jfluidstructs.2011.01.006
    [16] TOKYAY T, CONSTANTINESCU G, MEIBURG E. Lock-exchange gravity currents with a low volume of release propagating over an array of obstacles[J]. Journal of Geophysical Research: Oceans, 2014, 119(5): 2752-2768. doi:  10.1002/2013JC009721
    [17] TOKYAY T, CONSTANTINESCU G. The effects of a submerged non-erodible triangular obstacle on bottom propagating gravity currents[J]. Physics of Fluids, 2015, 27(5): 056601. doi:  10.1063/1.4919384
    [18] ZHOU J, VENAYAGAMOORTHY S K. Numerical simulations of intrusive gravity currents interacting with a bottom-mounted obstacle in a continuously stratified ambient[J]. Environmental Fluid Mechanics, 2017, 17(2): 191-209. doi:  10.1007/s10652-016-9454-3
    [19] WILSON R I, FRIEDRICH H, STEVENS C. Turbulent entrainment in sediment-laden flows interacting with an obstacle[J]. Physics of Fluids, 2017, 29(3): 036603. doi:  10.1063/1.4979067
    [20] BARCELONA A, SERRA T, COLOMER J. Fragmented canopies control the regimes of gravity current development[J]. Journal of Geophysical Research:Oceans, 2018, 123(3): 1631-1646. doi:  10.1002/2017JC013145
    [21] 贾复, 吴乃华, 张伯寅. 分层流体中异重流的流态研究[J]. 水动力学研究与进展,1986,1(2):63-69. (JIA Fu, WU Naihua, ZHANG Boyin. A study on flow patterns of gravity current in stratified fluid[J]. Chinese Journal of Hydrodynamics, 1986, 1(2): 63-69. (in Chinese)
    [22] HE Z G, LV Y F, YUAN Y P, et al. Front propagation of gravity currents on inclined bottoms in linearly stratified fluids[J]. Environmental Fluid Mechanics, 2019, 19(1): 279-296. doi:  10.1007/s10652-018-9610-z
    [23] HE Z G, ZHAO L, ZHU R, et al. Separation of particle-laden gravity currents down a slope in linearly stratified environments[J]. Physics of Fluids, 2019, 31(10): 106602. doi:  10.1063/1.5116067
    [24] ZHOU J, VENAYAGAMOORTHY S K. Impact of ambient stable stratification on gravity currents propagating over a submerged canopy[J]. Journal of Fluid Mechanics, 2020, 898: A15. doi:  10.1017/jfm.2020.418
    [25] 林颖典, 刘雅钰, 袁野平. 在层结和非层结环境下植被群对异重流运动的影响[J]. 吉林大学学报(地球科学版),2019,49(6):1714-1722. (LIN Yingtien, LIU Yayu, YUAN Yeping. Effect of vegetation patch on gravity current movement in stratified and non-stratified environments[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(6): 1714-1722. (in Chinese)
    [26] TANINO Y, NEPF H M, KULIS P S. Gravity currents in aquatic canopies[J]. Water Resources Research, 2005, 41(12): W12402.
    [27] JAMALI M, ZHANG X Y, NEPF H M. Exchange flow between a canopy and open water[J]. Journal of Fluid Mechanics, 2008, 611: 237-254. doi:  10.1017/S0022112008002796
    [28] DAI A. Experiments on two-layer density-stratified inertial gravity currents[J]. Physical Review Fluids, 2017, 2(7): 73802. doi:  10.1103/PhysRevFluids.2.073802
    [29] WINTERS K B, LOMBARD P N, RILEY J J, et al. Available potential energy and mixing in density-stratified fluids[J]. Journal of Fluid Mechanics, 1995, 289: 115-128. doi:  10.1017/S002211209500125X
    [30] KNELLER B, BUCKEE C. The structure and fluid mechanics of turbidity currents: a review of some recent studies and their geological implications[J]. Sedimentology, 2000, 47(Suppl1): 62-94.
  • [1] 郝由之, 假冬冬, 张幸农, 吴磊, 陈长英.  植被对河道水流及岸滩形态演变影响研究进展 . 水利水运工程学报, 2022, (3): 1-11. doi: 10.12170/20210309003
    [2] 张劢捷, 杨文琦, 周成, 陈群, 李登华.  植被联合植筋带护坡水力特性模型试验 . 水利水运工程学报, 2021, (3): 136-143. doi: 10.12170/20200830005
    [3] 赵瑜琪, 彭清娥, 史学伟, 杨克君.  非淹没刚性挺水植被对弯道水流特性的影响 . 水利水运工程学报, 2021, (6): 80-88. doi: 10.12170/20200829002
    [4] 申震洲, 姚文艺, 肖培青, 饶良懿, 李勉, 杨吉山, 焦鹏, 荆诚然.  黄河流域砒砂岩区地貌-植被-侵蚀耦合研究进展 . 水利水运工程学报, 2020, (4): 64-71. doi: 10.12170/20191229002
    [5] 张中流, 刘慈军, 何宁, 周彦章, 国建飞, 周玉娟.  基于MATLAB-GUI的刚性桩复合地基沉降计算 . 水利水运工程学报, 2016, (2): 76-82.
    [6] 姬昌辉, 洪大林, 丁瑞, 申霞.  含淹没植被明渠水位及糙率变化试验研究 . 水利水运工程学报, 2013, (1): 60-65.
    [7] 张翔,邱秀云,李琳,赵涛,罗菲.  垂向异重流式分离鳃在静水中的集成试验 . 水利水运工程学报, 2011, (2): -.
    [8] 陆桂华,金君良,吴志勇,何海.  水文模型植被参数获取方法及应用研究 . 水利水运工程学报, 2009, (4): -.
    [9] 高亚军,陆永军,李国斌.  黄河小浪底库区高含沙异重流的运动过程分析 . 水利水运工程学报, 2008, (2): -.
    [10] 朱红钧,赵振兴,韩璐.  有植被的河道水流紊动特性模型试验研究 . 水利水运工程学报, 2006, (4): 57-61.
    [11] 李克亮,洪晓林.  用并层非均匀单元法分析碾压混凝土拱坝温度应力 . 水利水运工程学报, 2001, (3): 41-47.
    [12] 鄢俊,陶同康,李定方.  土工膜防渗层结构优化设计 . 水利水运工程学报, 2001, (4): 45-48.
    [13] 杨树清,窦国仁.  粘弹性流体边界层运动的紊流结构 . 水利水运工程学报, 1993, (3): -.
    [14] 陆力,黄继汤,许协庆.  空泡在固液两相液体中靠近刚性边壁附近溃灭的实验研究 . 水利水运工程学报, 1991, (4): -.
    [15] 窦国仁,杨树清.  高分子聚合物减阻流的减阻机理及其紊动能谱 . 水利水运工程学报, 1989, (4): -.
    [16] 朱秀娟,张一成.  无溶剂环氧重防腐涂料的研究 . 水利水运工程学报, 1987, (2): -.
    [17] 窦国仁.  紊流随机理论在边界层中的应用 . 水利水运工程学报, 1983, (4): -.
    [18] 董曾南.  水工建筑物中的紊流边界层问题 . 水利水运工程学报, 1983, (3): -.
    [19] 孙海宁.  我所第三届学术委员会第七次会议审查评议1981年重要科研成果 . 水利水运工程学报, 1982, (1): -.
    [20] 陈中一.  海洋刚性平台的动力分析 . 水利水运工程学报, 1982, (3): -.
  • 加载中
图(9) / 表 (1)
计量
  • 文章访问数:  168
  • HTML全文浏览量:  63
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-29
  • 网络出版日期:  2021-11-23
  • 刊出日期:  2022-02-15

/

返回文章
返回