Study on hydraulic characteristics simulation and optimal layout of open-wide single chute spillway
-
摘要: 开敞式宽大单泄槽溢洪道与一般溢洪道相比易发生水流流态复杂、掺气效果差等工程安全问题。以马来西亚Baleh水电工程为例,采用VOF法与RNG k-ε双方程紊流模型对溢洪道流场进行三维数值模拟。计算分析了不同工况下溢洪道流态、流速、沿程压强等水力特性的分布规律。同时开展1∶50物理模型试验,对比分析数值模拟结果与模型试验结果发现,两者基本一致,验证了开敞式宽大单泄槽溢洪道水力特性数值模拟的准确性与可行性。进而利用紊流模型计算分析了溢洪道掺气坎的优化布置方案,结果表明:1#掺气坎抬高20 cm后,坎后掺气空腔长度由11.03 m增大至19.84 m,消能率提高了6.11%;3#掺气坎沿泄槽陡坡上移15 m后,挑流水舌冲击位置上移,减轻了对挑流鼻坎段水流流态的影响。研究结果对同类工程的优化设计有一定的借鉴作用。Abstract: Compared with the general spillway, the open spillway with a wide single chute is prone to complicated flow pattern and poor aeration effect. Taking the Baleh Hydropower Project in Malaysia as an example, this study uses the VOF method and the RNG k-ε two-equation turbulence model to carry out a three-dimensional numerical simulation of the spillway flow field. The calculation and analysis of the distribution law of the hydraulic characteristics of the spillway were made under different working conditions, such as flow pattern, velocity, and pressure along the way. At the same time, a 1∶50 physical model test was carried out. After comparative analysis, the model test results were basically consistent with the numerical simulation results, which verified the accuracy and feasibility of the numerical simulation of the hydraulic characteristics of the spillway with an open-wide single chute. Then the turbulence model was used to calculate and analyze the optimized layout of the spillway aeration sill in detail. The results show that: after the 1# aeration sill is raised by 20 cm, the length of the aeration cavity behind the sill increases from 11.03 m to 19.84 m, Energy dissipation rate increased by 6.11%; after 3# aeration sill moves up 15 m along the steep slope of the chute, the impact position of the tipping water tongue moves upward, reducing the impact on the flow pattern of the tipping nose sill section. The research results have a certain reference for the optimization design of similar projects.
-
Key words:
- spillway /
- hydraulic characteristics /
- numerical simulation /
- physical model /
- optimal layout
-
表 1 试验及数值模拟工况
Table 1. Test and numerical simulation conditions
组次 洪水
频率/%溢洪道
泄水量/(m3·s−1)库水位/
m下游
水位/m溢洪道闸门 Z1 20 2 442.2 221.24 47.392 5孔局开 Z2 10 2 701.6 221.32 48.010 5孔局开 Z3 1 3 153.1 221.45 49.049 5孔局开 Z4 0.2 3 384.4 221.52 49.547 5孔局开 Z5 0.1 3 842.2 221.65 50.531 5孔局开 Z6 0.01 12 014.1 223.42 64.080 4孔全开,关右孔 Z7 0.01 12 014.1 223.42 64.080 4孔全开,关中孔 Z8 0.01 13 546.9 223.11 66.135 5孔全开 Z9 PMF 16 353.0 224.83 69.536 5孔全开 表 2 沿程泄槽段消能率
Table 2. Energy dissipation rate of chute section along the ways
工况 断面1(CH0.000) 断面2(CH248.000) 总能差/m 消能率/% 断面总能/m 平均水深/m 平均流速/(m·s−1) 断面总能/m 平均水深/m 平均流速/(m·s−1) Z5物模 221.72 31.65 1.18 75.96 1.75 35.55 145.76 65.74 Z5数模 221.26 31.20 1.09 82.00 6.37 35.94 139.26 62.94 Z8物模 223.48 33.11 2.69 136.45 3.13 49.23 87.03 38.94 Z8数模 222.91 32.59 2.50 133.55 7.93 47.67 89.36 40.08 表 3 掺气坎下游沿程掺气浓度物理模型量测结果
Table 3. Aeration concentration along downstream aerators
1#掺气槽 2#掺气槽 3#掺气槽 桩号 掺气浓度/% 桩号 掺气浓度/% 桩号 掺气浓度/% Z5工况 Z8工况 Z5工况 Z8工况 Z5工况 Z8工况 CH100.929 39.0 5.0 CH175.480 89.5 85.8 CH227.682 82.0 92.9 CH110.439 31.0 1.8 CH183.162 78.5 73.5 CH235.364 76.0 83.5 CH119.825 27.0 1.5 CH190.845 67.0 39.0 CH248.000 89.0 59.0 CH129.236 19.5 1.4 CH198.527 63.0 22.0 CH261.382 83.0 15.7 表 4 优化前后沿程泄槽段消能率
Table 4. Energy dissipation rate of chute section before and after optimization
工况 断面1(CH0.000) 断面2(CH248.000) 总能差/m 消能率/% 断面总能/m 平均水深/m 平均流速/(m·s−1) 断面总能/m 平均水深/m 平均流速/(m·s−1) Z8 222.91 32.59 2.50 133.55 7.93 47.67 89.36 40.08 Z8优化方案 223.59 33.20 2.77 120.32 4.77 45.55 103.27 46.19 -
[1] 王挺力. 册田水库溢洪道水力特性物理模型试验和三维数值模拟[D]. 山西: 太原理工大学, 2012. WANG Tingli. Experiment and numerical simulation the hydraulic characteristics of Cetian resevoir spillway[D]. Shanxi: Taiyuan University of Technology, 2012. (in Chinese) [2] 秦亚斌, 张振华, 朱大勇. 某水电站溢洪道闸室堰体厚度优化分析[J]. 水利水运工程学报,2016(2):104-110 QIN Yabin, ZHANG Zhenhua, ZHU Dayong. Optimization of weir thickness of spillway sluice chamber[J]. Hydro-Science and Engineering, 2016(2): 104-110. (in Chinese) [3] 彭勇, 张建民, 许唯临, 等. 前置掺气坎式阶梯溢洪道掺气水深及消能率的计算[J]. 水科学进展,2009,20(1):63-68 PENG Yong, ZHANG Jianmin, XU Weilin, et al. Calculation of aerated water depth and energy dissipation rate of a pre-aerator stepped spillway[J]. Advances in Water Science, 2009, 20(1): 63-68. (in Chinese) [4] 刘善均, 朱利, 张法星, 等. 前置掺气坎阶梯溢洪道近壁掺气特性[J]. 水科学进展,2014,25(3):401-406 LIU Shanjun, ZHU Li, ZHANG Faxing, et al. Aeration characteristics for skimming flow along the pre-aerator stepped spillways[J]. Advances in Water Science, 2014, 25(3): 401-406. (in Chinese) [5] 张鲁鲁. 新疆某水电站溢洪道台阶段水工模型试验研究[J]. 西北水电,2016(1):80-82 ZHANG Lulu. Study on hydraulic model tests on step section of spillway[J]. Northwest Hydropower, 2016(1): 80-82. (in Chinese) [6] BAYON A, TORO J P, BOMBARDELLI F A, et al. Influence of VOF technique, turbulence model and discretization scheme on the numerical simulation of the non-aerated, skimming flow in stepped spillways[J]. Journal of Hydro-Environment Research, 2018, 19: 137-149. doi: 10.1016/j.jher.2017.10.002 [7] 谭立新, 李梅玲, 唐敏, 等. 前置掺气坎坡度对阶梯溢洪道掺气水流影响的数值模拟[J]. 水资源与水工程学报,2018,29(4):150-155 TAN Lixin, LI Meiling, TANG Min, et al. Numerical simulation of the influence of the slope of the front aerator on the aeration flow of the stepped spillway[J]. Journal of Water Resources and Water Engineering, 2018, 29(4): 150-155. (in Chinese) [8] 焦修明. 弧形闸门动力特性及流激振动研究[D]. 武汉: 武汉大学, 2005. JIAO Xiuming. Research on dynamic characteristic and flow-induced vibration of radial gate[D]. Wuhan: Wuhan University, 2005. (in Chinese) [9] 刘彬, 忽彦鹏, 杨磊, 等. 基于VOF法长陡坡排水隧洞三维数值模拟[J]. 武汉大学学报(工学版),2017,50(1):43-49 LIU Bin, HU Yanpeng, YANG Lei, et al. 3D numerical simulation of long steep drainage tunnel based on VOF method[J]. Engineering Journal of Wuhan University, 2017, 50(1): 43-49. (in Chinese) [10] 张文皎. 高坝泄洪诱发低频声波原型观测与机理研究[D]. 天津: 天津大学, 2015. ZHANG Wenjiao. Investigations on prototype observation and mechanisms of low frequency noise induced by high dam flood discharge[D]. Tianjin: Tianjin University, 2015. (in Chinese) [11] 杜金威, 王均星, 李辉成. 阳升观台阶溢洪道水流数值模拟研究[J]. 武汉大学学报(工学版),2020,53(2):110-116 DU Jinwei, WANG Junxing, LI Huicheng. Numerical simulation of the water flow in the stepped spillway of Yangshengguan reservoir[J]. Engineering Journal of Wuhan University, 2020, 53(2): 110-116. (in Chinese) [12] 严波, 彭雄奇. 基于CVFEM/FDM的RTM非等温充模过程数值模拟[C]∥第17届全国复合材料学术会议论文集. 北京: 中国力学学会, 中国宇航学会, 中国航空学会, 中国复合材料学会, 2012: 626-630. YAN Bo, PENG Xiongqi. Numerical simulation of non-isothermal mold filling process in RTM based on CVFEM/FDM[C]∥Chinese Society of Aeronautics and Astronautics. Proceedings of the 17th National Conference on Composite Materials. Beijing: Chinese Society of Mechanics, Chinese Society of Astronautics, Chinese Society of Aeronautics, Chinese Society of Composites, 2012: 626-630. (in Chinese) [13] 李浩田, 别玉静, 顾太欧. 通气孔型式对超宽泄槽的掺气影响研究[J]. 东北水利水电,2021,39(4):36-38 LI Haotian, BIE Yujing, GU Taiou. Study effect of type vent on aeration of super-wide drainage chute[J]. Water Resources & Hydropower of Northeast China, 2021, 39(4): 36-38. (in Chinese) [14] 高学平, 贾来飞, 宋慧芳, 等. 溢洪道掺气坎槽后掺气水流三维数值模拟研究[J]. 水力发电学报,2014,33(2):90-96 GAO Xueping, JIA Laifei, SONG Huifang, et al. Three dimensional numerical simulation of aerated flow downstream of aeration slot on spillway[J]. Journal of Hydraulic Engineering, 2014, 33(2): 90-96. (in Chinese) [15] 张靓, 杨具瑞, 陈玉壮. 前置掺气坎角度对溢流坝阶梯面消能特性的影响[J]. 水利水运工程学报,2016(4):118-125 ZHANG Liang, YANG Jurui, CHEN Yuzhuang. Impacts of pre-aerator angels on energy dissipation of stepped spillway[J]. Hydro-Science and Engineering, 2016(4): 118-125. (in Chinese) [16] 白雪. 某水库台阶式溢洪道掺气坎优化试验研究[J]. 水利科技与经济,2016,22(12):65-67 BAI Xue. Experimental study on optimization of aerator of stepped spillway in a reservoir[J]. Water Conservancy Science and Technology and Economy, 2016, 22(12): 65-67. (in Chinese) -