Experiment study on the strength and microstructure of bentonite-lime improved loess
-
摘要: 黄土工程性能较差,必须经过处理才能作为路基填料使用。为了提高黄土路基的承载力,更好地解决黄土路基的工程病害问题,在黄土路基填料中加入膨润土和石灰,通过不同组合掺量的膨润土-石灰-黄土的无侧限抗压强度试验与核磁共振试验,分别从土体强度和孔隙结构的角度出发,研究各掺量膨润土-石灰对黄土路基填料强度及孔隙结构的改良效果。试验结果表明:膨润土可以有效填充黄土的孔隙,石灰能使土体内分散的颗粒连成整体,并使土体无侧限抗压强度提高4.01倍;改良黄土的无侧限抗压强度随着养护龄期的增大而增大;与素黄土相比,改良黄土的孔隙度降低,大孔隙占比显著减少。通过微观电镜扫描发现土颗粒之间连成整体,且颗粒间的大孔隙也基本被填充。因此,膨润土和石灰对黄土填料的改良效果较为显著。Abstract: Loess has poor engineering performance and must be treated before it can be used as a roadbed filler. In order to improve the bearing capacity of the loess subgrade, and better solve the engineering disease problem of the loess subgrade, bentonite and lime are added to the loess roadbed filler, and the unconfined compressive strength test and nuclear magnetic resonance test of different combinations of bentonite-lime-loess are carried out. From the perspective of soil strength and pore structure, each content is studied. Bentonite-lime improves the strength and pore structure of loess roadbed fillers. The test results show that bentonite can effectively fill the pores of loess, lime can make the dispersed particles in the soil form a whole, and increase the unconfined compressive strength of the soil by 4.01 times; the unconfined compressive strength of the improved loess increases with the maintenance. Compared with plain loess, the porosity of modified loess decreases, and the proportion of large pores decreases significantly. Scanning through a microscopic electron microscope found that the soil particles were connected as a whole, and the large pores between the particles were basically filled. Therefore, the improvement effect of bentonite and lime on loess filler is more significant.
-
Key words:
- bentonite /
- lime /
- unconfined compressive strength /
- microstructure; improved loess
-
表 1 黄土试样基本物理性质
Table 1. Basic physical properties of loess soil samples
土粒相对
密度最优含水率/
%最大干密度 /
(g·cm−3)液限/
%塑限/
%塑性
指数2.68 16.61 1.72 29.70 19.46 10.23 表 2 试验工况
Table 2. Test conditions
试验工况 膨润土掺量/% 石灰掺量/% 最优含水量/% 最大干密度/(g·cm−3) 液限/% 塑限/% 塑性指数 1 3 3 18.17 1.60 40.32 21.69 18.63 2 3 5 19.39 1.58 41.58 20.30 21.28 3 3 7 20.58 1.55 38.85 25.12 13.73 4 5 3 19.36 1.63 36.54 17.42 19.12 5 5 5 21.29 1.61 40.21 25.10 15.11 6 5 7 23.40 1.58 35.67 17.15 18.53 7 7 3 21.47 1.66 41.10 27.26 13.84 8 7 5 23.91 1.65 42.06 27.19 14.88 9 7 7 24.58 1.60 38.63 19.77 18.85 表 3 不同膨润土-石灰掺量的孔隙度
Table 3. Porosity of different bentonite and lime contents
膨润土
掺量/%孔隙度/% 石灰掺量0 石灰掺量3% 石灰掺量5% 石灰掺量7% 0 32.00 / / / 3 / 29.91 28.79 28.20 5 / 28.26 27.68 28.71 7 / 29.32 29.45 30.51 表 4 最大孔隙值及占比
Table 4. Maximum pore value and proportion
膨润土掺量/% 石灰掺量/% 最大孔径值/μm 所占百分比/% 0 0 70.594 15 1.09 3 3 61.442 26 0.53 3 5 61.442 26 0.10 3 7 61.442 26 9×10−4 5 3 70.594 15 0.12 5 5 61.442 26 0.29 5 7 70.594 15 0.15 7 3 75.669 25 1×10−4 7 5 65.859 43 0.35 7 7 65.859 43 0.39 -
[1] TABARSA A, LATIFI N, MEEHAN C L, et al. Laboratory investigation and field evaluation of loess improvement using nanoclay-A sustainable material for construction[J]. Construction and Building Materials, 2018, 158: 454-463. doi: 10.1016/j.conbuildmat.2017.09.096 [2] JULPHUNTHONG P. Chemical stabilization of loess in northeast Thailand using the mixture of calcined marble dust waste and sugarcane bagasse ash waste[J]. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 2015, 46: 103-108. [3] LATIFI N, EISAZADEH A, MARTO A. Strength behavior and microstructural characteristics of tropical laterite soil treated with sodium silicate-based liquid stabilizer[J]. Environmental Earth Sciences, 2014, 72(1): 91-98. doi: 10.1007/s12665-013-2939-1 [4] LATIFI N, HORPIBULSUK S, MEEHAN C L, et al. Improvement of problematic soils with biopolymer—an environmentally friendly soil stabilizer[J]. Journal of Materials in Civil Engineering, 2017, 29(2): 04016204. doi: 10.1061/(ASCE)MT.1943-5533.0001706 [5] LATIFI N, EISAZADEH A, MARTO A, et al. Tropical residual soil stabilization: a powder form material for increasing soil strength[J]. Construction and Building Materials, 2017, 147: 827-836. doi: 10.1016/j.conbuildmat.2017.04.115 [6] ONYEJEKWE S, GHATAORA G S. Soil stabilization using proprietary liquid chemical stabilizers: sulphonated oil and a polymer[J]. Bulletin of Engineering Geology and the Environment, 2015, 74(2): 651-665. doi: 10.1007/s10064-014-0667-8 [7] TINGLE J S, NEWMAN J K, LARSON S L, et al. Stabilization mechanisms of nontraditional additives[J]. Transportation Research Record: Journal of the Transportation Research Board, 2007, 1989: 59-67. [8] KATZ L E, RAUCH A F, LILJESTRAND H M, et al. Mechanisms of soil stabilization with liquid ionic stabilizer[J]. Transportation Research Record: Journal of the Transportation Research Board, 2001, 1757(1): 50-57. doi: 10.3141/1757-06 [9] 高中南, 钟秀梅, 王峻, 等. 粉煤灰改良饱和黄土动力特性研究[J]. 世界地震工程,2019,35(3):91-98 GAO Zhongnan, ZHONG Xiumei, WANG Jun, et al. Dynamic characteristics of saturated loess improved by fly ash[J]. World Earthquake Engineering, 2019, 35(3): 91-98. (in Chinese) [10] 高中南, 周仲华, 王峻, 等. 粉煤灰改良饱和黄土的抗液化特性[J]. 地震工程学报,2018,40(1):105-110 doi: 10.3969/j.issn.1000-0844.2018.01.105 GAO Zhongnan, ZHOU Zhonghua, WANG Jun, et al. Anti-liquefaction properties of saturated loess improved by fly ash[J]. China Earthquake Engineering Journal, 2018, 40(1): 105-110. (in Chinese) doi: 10.3969/j.issn.1000-0844.2018.01.105 [11] 马文杰, 王博林, 王旭, 等. 改性黄土的力学特性试验研究[J]. 水利水电技术,2018,49(10):150-156 MA Wenjie, WANG Bolin, WANG Xu, et al. Experimental study on mechanical properties of modified loess[J]. Water Resources and Hydropower Engineering, 2018, 49(10): 150-156. (in Chinese) [12] 张沛云, 马学宁, 李善珍, 等. 高速铁路水泥改良黄土路基长期动力稳定性评价[J]. 振动与冲击,2019,38(11):80-87 ZHANG Peiyun, MA Xuening, LI Shanzhen, et al. Long-term dynamic stability evaluation for cement-improved loess subgrade of high speed railway[J]. Journal of Vibration and Shock, 2019, 38(11): 80-87. (in Chinese) [13] 刘钊钊, 王谦, 钟秀梅, 等. 木质素改良黄土的持水性和水稳性[J]. 岩石力学与工程学报,2020,39(12):2582-2592 LIU Zhaozhao, WANG Qian, ZHONG Xiumei, et al. Water holding capacity and water stability of lignin-modified loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(12): 2582-2592. (in Chinese) [14] 刘熙媛, 赵玮, 马占海, 等. 水泥改良黄土在冻融循环作用下的渗透性能[J]. 科学技术与工程,2018,18(34):221-225 doi: 10.3969/j.issn.1671-1815.2018.34.032 LIU Xiyuan, ZHAO Wei, MA Zhanhai, et al. Permeability of cement modified loess under freezing-thawing cycle[J]. Science Technology and Engineering, 2018, 18(34): 221-225. (in Chinese) doi: 10.3969/j.issn.1671-1815.2018.34.032 [15] 葛菲, 巨玉文, 蒋宗耀, 等. 水泥硅微粉改良黄土的抗剪强度试验研究[J]. 科学技术与工程,2020,20(16):6565-6569 doi: 10.3969/j.issn.1671-1815.2020.16.040 GE Fei, JU Yuwen, JIANG Zongyao, et al. Experimental research on shear strength of improved loess with cement and silicon micropowder[J]. Science Technology and Engineering, 2020, 20(16): 6565-6569. (in Chinese) doi: 10.3969/j.issn.1671-1815.2020.16.040 [16] 张耀, 胡再强, 陈昊, 等. 酸性溶液对黄土结构改良的试验研究[J]. 岩土工程学报,2018,40(4):681-688 doi: 10.11779/CJGE201804012 ZHANG Yao, HU Zaiqiang, CHEN Hao, et al. Experimental study on evolution of loess structure using acid solutions[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 681-688. (in Chinese) doi: 10.11779/CJGE201804012 [17] 中华人民共和国住房和城乡建设部. 土工试验方法标准 GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for geotechnical testing method GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese) [18] 倪修全, 殷和平, 陈德鹏. 土木工程材料[M]. 武汉: 武汉大学出版社, 2014. NI Xiuquan, YIN Heping, CHEN Depeng. Civil engineering materials[M]. Wuhan: Wuhan University Press, 2014. (in Chinese) [19] 张建伟, 亢飞翔, 边汉亮, 等. 冻融循环下木质素改良黄泛区粉土无侧限抗压强度试验研究[J]. 岩土力学,2020,41(增刊2):1-6 ZHANG Jianwei, KANG Feixiang, BIAN Hanliang, et al. Experiments on unconfined compressive strength of lignin modified silt in Yellow River flood area under freezing-thawing cycles[J]. Rock and Soil Mechanics, 2020, 41(Suppl2): 1-6. (in Chinese) [20] 尤梓玉. 冻融作用下黄土损伤及对边坡稳定性影响的研究[D]. 西安: 西安科技大学, 2019. YOU Ziyu. Study on loess damage and its influence on slope stability under freezing and thawing[D]. Xi’an: Xi’an University of Science and Technology, 2019. (in Chinese) -