Analysis of modulus influence of axial zoned concrete-faced rockfill dam
-
摘要: 轴向分区面板坝设计中,通过沿坝轴线方向将坝壳分为岸坡区、侧分区和中央区,依次填筑不同模量的材料,形成沿坝轴线方向的梯度模量来缩减坝壳的三维聚心变形、减小轴向位移,提高坝体变形协调性进而解决高面板坝挤压破坏问题。以锅浪跷面板坝工程为依托,通过数值计算模拟,对比研究了36种模量梯度组合的轴向分区面板坝的面板挤压破坏参考指标,分析轴向分区设计效果和分区模量对坝体及面板应力变形的影响。根据面板挤压破坏原理,以蓄水期面板的挠度和轴向压应力、面板最大挠度附近高程轴向位移及压应力、坝体的沉降和轴向位移为挤压破坏参考指标。结果显示,50%梯度方案与常规面板堆石坝相比,坝体向左右岸的轴向位移分别减小12.76%和14.73%,沉降减小14.42%,面板挠度减小15.28%,轴向压应力减小11.35%。研究为解决高面板坝的面板挤压破坏问题提供了新思路。Abstract: Axial zoned concrete-faced rockfill dam (CFRD) divides the dam shell along the dam axis into bank slope area, transition area and central area. By filling different modulus materials in turn to form gradient modulus along the axis of the dam, the three-dimensional centralization deformation and the axial displacement of the dam shell can be reduced, which can improve the deformation compatibility of the dam body, thus the extrusion failure problem of high CFRD can be solved. According to the principle of face slab rupture of high CFRD, several reference indexes of face slab rupture problem (F-indexes) during the impoundment period were selected, including the deflection and the axial displacement of the face slab, and the compressive stress of the elevation near the maximum deflection of the face slab, the settlement and axial displacement of the dam body. Based on a 200 m level CFRD project, the F-index of axial zoned CFRD with 36 kinds of modulus gradient combinations was studied by numerical simulation. The effects of axial zoned CFRD design and modulus influence of axial zoned CFRD were analyzed. The results show that in 50% of gradient schemes, the axial displacement of the dam body decreases by 12.76% to the left bank and 14.73% to the right bank, and the settlement decreases by 14.42%. The deflection of the face slab decreases by 15.28%, and the extreme value of axial compressive stress of the face slab is reduced by 11.35%. The study provides a new idea for solving the problem of slab rupture of high CFRDs.
-
表 1 筑坝材料邓肯-张E-B模型参数
Table 1. Calculation parameters of Duncan-Chang E-B model for dam construction materials
材料 ρd / (kg·m−3) Kur φ0 /° Δφ /° K n Rf Kb m 主堆石 2 190 2 600 60.59 12.65 1 300 0.357 0.85 900 −0.035 下游堆石 2 150 2 500 60.30 11.80 1 250 0.337 0.85 900 −0.040 过渡料 2 310 2 600 60.06 10.87 1 300 0.416 0.84 900 −0.047 垫层料 2 390 2 800 60.88 11.77 1 400 0.488 0.80 1 000 −0.060 注:ρd为密度;Kur为卸载再加载时的弹性模量基数;φ0为初始内摩擦角;Δφ为围压增加1个对数周期下摩擦角的减小值;n为弹性模量指数;Rf为破坏比;m为体积模量指数。 表 2 蓄水期坝体变形、应力极值
Table 2. Extreme values of deformation and stress of dam body during impoundment period
方案 坝型 沉降/cm 顺河向位移/cm 轴向位移/cm 主应力/MPa 向上游 向下游 向左岸 向右岸 σ1 σ3 −00+00 常规坝 42.235 2.548 14.810 6.898 5.526 −2.589 −0.384 −50+50 分区坝 36.143 0.722 11.905 6.018 4.712 −2.624 −0.439 表 3 蓄水期面板挤压破坏参考指标极值
Table 3. Extreme values of deformation and stress of face slab during impoundment period
方案 坝型 挠度/cm 114~120 m高程轴向位移/cm 轴向压应力/MPa 向左岸 向右岸 −00+00 常规坝 19.884 4.057 2.923 −4.342 −50+50 分区坝 16.846 3.789 2.641 −3.849 -
[1] 杨泽艳, 周建平, 王富强, 等. 300 m级高面板堆石坝安全性及关键技术研究综述[J]. 水力发电,2016,42(9):41-45, 63 doi: 10.3969/j.issn.0559-9342.2016.09.011 YANG Zeyan, ZHOU Jianping, WANG Fuqiang, et al. Research summary on safety and key technologies of 300 m-level face rockfill dam[J]. Water Power, 2016, 42(9): 41-45, 63. (in Chinese) doi: 10.3969/j.issn.0559-9342.2016.09.011 [2] 陆希, 徐宏璐. 镶嵌组合坝混凝土坝体结构体型探讨[J]. 西北水电,2014(6):30-33, 45 doi: 10.3969/j.issn.1006-2610.2014.06.008 LU Xi, XU Honglu. Study on concrete dam structural outline of embedded composite dam[J]. Northwest Hydropower, 2014(6): 30-33, 45. (in Chinese) doi: 10.3969/j.issn.1006-2610.2014.06.008 [3] 沈婷, 李国英. 镶嵌式面板堆石坝应力应变特性研究[J]. 岩土工程学报,2016,38(增刊2):266-271 SHEN Ting, LI Guoying. Stress-strain characteristics of embedded concrete face rockfill dam[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(Suppl2): 266-271. (in Chinese) [4] 王玉孝, 沈婷, 李国英. 组合型混凝土面板堆石坝应力应变特性分析[J]. 水利水运工程学报,2018(5):56-62 doi: 10.16198/j.cnki.1009-640x.2018.05.008 WANG Yuxiao, SHEN Ting, LI Guoying. Stress and deformation properties of combined CFRD[J]. Hydro-Science and Engineering, 2018(5): 56-62. (in Chinese) doi: 10.16198/j.cnki.1009-640x.2018.05.008 [5] 李炎隆, 张宁, 曹智昶, 等. 坝踵混凝土体型对混凝土面板应力变形的影响[J]. 水利水运工程学报,2019(1):11-17 doi: 10.12170/201901002 LI Yanlong, ZHANG Ning, CAO Zhichang, et al. Influence of concrete heel shape on stress and deformation of concrete slab of a dam[J]. Hydro-Science and Engineering, 2019(1): 11-17. (in Chinese) doi: 10.12170/201901002 [6] 刘静, 陆希, 党发宁. 混凝土重力坝-面板堆石坝复式结构型式研究[J]. 水利水运工程学报,2022(2):92-100 doi: 10.12170/20210318001 LIU Jing, LU Xi, DANG Faning. Study on compound structure of concrete gravity dam-face rockfill dam[J]. Hydro-Science and Engineering, 2022(2): 92-100. (in Chinese) doi: 10.12170/20210318001 [7] 李炎隆, 张再望, 卜鹏, 等. 镶嵌面板坝高模量区优化设计研究[J]. 应用力学学报,2018,35(2):358-364, 455 LI Yanlong, ZHANG Zaiwang, BU Peng, et al. The optimization design of high modulus zone to inlaid concrete faced rockfill dam[J]. Chinese Journal of Applied Mechanics, 2018, 35(2): 358-364, 455. (in Chinese) [8] 周恒, 刘静, 陆希. 复式结构特高面板堆石坝安全性论证[J]. 水电能源科学,2022,40(3):87-90 ZHOU Heng, LIU Jing, LU Xi. Safety demonstration of compound structure extra-high face rockfill dam[J]. Water Resources and Power, 2022, 40(3): 87-90. (in Chinese) [9] 蔡新合, 姚栓喜, 雷艳. 高模量基础垫座特高面板堆石坝研究[J]. 西北水电,2020(6):21-25 doi: 10.3969/j.issn.1006-2610.2020.06.005 CAI Xinhe, YAO Shuanxi, LEI Yan. Study on extra-high CFRD with high modulus foundation cushion[J]. Northwest Hydropower, 2020(6): 21-25. (in Chinese) doi: 10.3969/j.issn.1006-2610.2020.06.005 [10] 陆静, 高志永. 坝体材料分区对高面板堆石坝应力变形的影响[J]. 人民黄河,2016,38(2):90-94 doi: 10.3969/j.issn.1000-1379.2016.02.024 LU Jing, GAO Zhiyong. Influence of material partition on stress and deformation of high CFRD[J]. Yellow River, 2016, 38(2): 90-94. (in Chinese) doi: 10.3969/j.issn.1000-1379.2016.02.024 [11] 王东, 周泽泽, 郭广鑫, 等. 缩减三维变形的防挤压破坏的面板坝: CN108517840B[P]. 2020-02-21. WANG Dong, ZHOU Zeze, GUO Guangxin, et al. Concrete face dam with reduced three-dimensional deformation and anti extrusion failure: CN108517840B[P]. 2020-02-21. (in Chinese) [12] 徐泽平. 混凝土面板堆石坝关键技术与研究进展[J]. 水利学报,2019,50(1):62-74 doi: 10.13243/j.cnki.slxb.20180897 XU Zeping. Research progresses and key technologies of CFRD construction[J]. Journal of Hydraulic Engineering, 2019, 50(1): 62-74. (in Chinese) doi: 10.13243/j.cnki.slxb.20180897 [13] 湛正刚, 张合作, 程瑞林, 等. 高面板坝全寿命周期变形控制方法及应用[J]. 岩土工程学报,2022,44(6):1141-1147 ZHAN Zhenggang, ZHANG Hezuo, CHENG Ruilin, et al. Application of methods for life-cycle deformation control of high concrete-faced rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1141-1147. (in Chinese) [14] 周墨臻, 张丙印, 张宗亮, 等. 超高面板堆石坝面板挤压破坏机理及数值模拟方法研究[J]. 岩土工程学报,2015,37(8):1426-1432 doi: 10.11779/CJGE201508010 ZHOU Mozhen, ZHANG Bingyin, ZHANG Zongliang, et al. Mechanisms and simulation methods for extrusion damage of concrete faces of high concrete-faced rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1426-1432. (in Chinese) doi: 10.11779/CJGE201508010 [15] 周泽泽, 王东, 胡再国. 缩减三维变形的防挤压破坏面板坝设计[J]. 水利建设与管理,2019,39(8):22-25 doi: 10.16616/j.cnki.11-4446/TV.2019.08.06 ZHOU Zeze, WANG Dong, HU Zaiguo. Design of anti-extrusion failure panel dam to reduce 3D deformation[J]. Water Conservancy Construction and Management, 2019, 39(8): 22-25. (in Chinese) doi: 10.16616/j.cnki.11-4446/TV.2019.08.06 -