[1]
|
朱松松, 李同春, 冯旭松, 等. 基于有限元法和逐步回归法的泵站位移统计模型构建方法[J]. 水利水电技术,2018,49(2):49-55 doi: 10.13928/j.cnki.wrahe.2018.02.008
ZHU Songsong, LI Tongchun, FENG Xusong, et al. Finite element method and stepwise regression method-based method for constructing displacement statistical model of pumping station[J]. Water Resources and Hydropower Engineering, 2018, 49(2): 49-55. (in Chinese) doi: 10.13928/j.cnki.wrahe.2018.02.008 |
[2]
|
陈悦, 汪程, 尹文中. 基于Kohonen聚类的特高拱坝变形分区[J]. 三峡大学学报(自然科学版),2019,41(1):1-4 doi: 10.13393/j.cnki.issn.1672-948x.2019.01.001
CHEN Yue, WANG Cheng, YIN Wenzhong. Deformation partitioning of super-high arch dam based on Kohonen clustering[J]. Journal of China Three Gorges University (Natural Sciences), 2019, 41(1): 1-4. (in Chinese) doi: 10.13393/j.cnki.issn.1672-948x.2019.01.001 |
[3]
|
SHAO C F, GU C S, YANG M, et al. A novel model of dam displacement based on panel data[J]. Structural Control and Health Monitoring, 2018, 25(1): e2037. doi: 10.1002/stc.2037 |
[4]
|
CHEN B, HU T Y, HUANG Z S, et al. A spatio-temporal clustering and diagnosis method for concrete arch dams using deformation monitoring data[J]. Structural Health Monitoring, 2019, 18(5/6): 1355-1371. |
[5]
|
LIU Y T, ZHENG D J, GEORGAKIS C, et al. Deformation analysis of an ultra-high arch dam under different water level conditions based on optimized dynamic panel clustering[J]. Applied Sciences, 2022, 12(1): 481. doi: 10.3390/app12010481 |
[6]
|
黄潇霏. 混凝土坝健康状态的实测资料时空诊断方法[D]. 南京: 河海大学, 2018.
HUANG Xiaofei. Spatio-temporal health diagnosis method for concrete dam based on monitoring information[D]. Nanjing: Hohai university, 2018. (in Chinese) |
[7]
|
施玉群, 何金平. 基于信息熵的大坝多效应量聚类融合诊断模型[J]. 水力发电学报,2013,32(5):239-243
SHI Yuqun, HE Jinping. Multiple effect quantity fusion diagnosis model of dam health based on information entropy and cluster analysis[J]. Journal of Hydroelectric Engineering, 2013, 32(5): 239-243. (in Chinese) |
[8]
|
HU J, MA F H. Zoned deformation prediction model for super high arch dams using hierarchical clustering and panel data[J]. Engineering Computations, 2020, 37(9): 2999-3021. doi: 10.1108/EC-06-2019-0288 |
[9]
|
牛景太, 姜灵, 邓志平, 等. 基于原型监测资料的特高拱坝变形实时风险率模型[J]. 水资源与水工程学报,2021,32(5):166-174 doi: 10.11705/j.issn.1672-643X.2021.05.22
NIU Jingtai, JIANG Ling, DENG Zhiping, et al. Real-time risk rate model for deformation of ultra-high arch dams based on prototype monitoring data[J]. Journal of Water Resources and Water Engineering, 2021, 32(5): 166-174. (in Chinese) doi: 10.11705/j.issn.1672-643X.2021.05.22 |
[10]
|
黄成章, 顾冲时, 何菁. 混凝土坝变形监测缺失数据处理新方法[J]. 水利水电科技进展,2022,42(2):89-94
HUANG Chengzhang, GU Chongshi, HE Jing. A novel method for processing missing data of concrete dam deformation[J]. Advances in Science and Technology of Water Resources, 2022, 42(2): 89-94. (in Chinese) |
[11]
|
孙冬璞, 曲丽. 时间序列特征表示与相似性度量研究综述[J]. 计算机科学与探索,2021,15(2):195-205 doi: 10.3778/j.issn.1673-9418.2003063
SUN Dongpu, QU Li. Survey on feature representation and similarity measurement of time series[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(2): 195-205. (in Chinese) doi: 10.3778/j.issn.1673-9418.2003063 |
[12]
|
李因果, 何晓群. 面板数据聚类方法及应用[J]. 统计研究,2010,27(9):73-79 doi: 10.3969/j.issn.1002-4565.2010.09.011
LI Yinguo, HE Xiaoqun. Panel data clustering method and application[J]. Statistical Research, 2010, 27(9): 73-79. (in Chinese) doi: 10.3969/j.issn.1002-4565.2010.09.011 |
[13]
|
褚洪洋, 柴跃廷, 刘义. 基于层次分裂算法的价格指数序列聚类[J]. 清华大学学报(自然科学版),2015,55(11):1178-1183 doi: 10.16511/j.cnki.qhdxxb.2015.21.010
CHU Hongyang, CHAI Yueting, LIU Yi. Cluster analysis of a price index series based on the hierarchical division algorithm[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(11): 1178-1183. (in Chinese) doi: 10.16511/j.cnki.qhdxxb.2015.21.010 |
[14]
|
王玲, 孟建瑶, 徐培培, 等. 基于多维时间序列形态特征的相似性动态聚类算法[J]. 工程科学学报,2017,39(7):1114-1122
WANG Ling, MENG Jianyao, XU Peipei, et al. Similarity dynamical clustering algorithm based on multidimensional shape features for time series[J]. Chinese Journal of Engineering, 2017, 39(7): 1114-1122. (in Chinese) |
[15]
|
林钱洪, 王志海, 原继东, 等. 基于趋势信息的时间序列分类方法[J]. 中国科学技术大学学报,2019,49(2):138-148
LIN Qianhong, WANG Zhihai, YUAN Jidong, et al. Trend information for time series classification[J]. Journal of University of Science and Technology of China, 2019, 49(2): 138-148. (in Chinese) |
[16]
|
李海林, 杨丽彬. 基于增量动态时间弯曲的时间序列相似性度量方法[J]. 计算机科学,2013,40(4):227-230 doi: 10.3969/j.issn.1002-137X.2013.04.049
LI Hailin, YANG Libin. Similarity measure for time series based on incremental dynamic time warping[J]. Computer Science, 2013, 40(4): 227-230. (in Chinese) doi: 10.3969/j.issn.1002-137X.2013.04.049 |
[17]
|
乔美英, 刘宇翔, 陶慧. 一种基于信息熵和DTW的多维时间序列相似性度量算法[J]. 中山大学学报(自然科学版),2019,58(2):1-8 doi: 10.13471/j.cnki.acta.snus.2019.02.001
QIAO Meiying, LIU Yuxiang, TAO Hui. A similarity metric algorithm for multivariate time series based on information entropy and DTW[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2019, 58(2): 1-8. (in Chinese) doi: 10.13471/j.cnki.acta.snus.2019.02.001 |
[18]
|
刘云霞. 基于动态时间规整的面板数据聚类方法研究及应用[J]. 统计研究,2016,33(11):93-101
LIU Yunxia. Research and application of panel data clustering method based on dynamic time warping[J]. Statistical Research, 2016, 33(11): 93-101. (in Chinese) |