Stability evaluation method for high slope based on fuzzy cloud theory combined with weights
-
摘要: 针对高边坡稳定性评价中指标赋权及其模糊隶属度等不确定问题,提出了一种基于组合赋权模糊云理论的高边坡稳定性评价方法。通过构建多因素协同驱动的高边坡稳定性评价指标体系及其等级划分标准,综合利用梯层指标的主客观组合赋权方法,并考虑到评价中的模糊性和随机性特点,引入模糊熵和云理论,建立了适应于高边坡稳定性多维评价梯级云模型。最后应用于锦屏Ⅰ级水电站左岸边坡的稳定性评价,对比分析了不同评价方法的计算结果,从而佐证了文中提出方法的有效性。Abstract: The high slope of the hydropower project is a complex system jointly affected by many internal and external factors. There are different kinds of methods used for overall stability evaluation of high slopes, but these traditional methods usually have some shortcomings. A high slope stability evaluation method is proposed in view of the difficulties in determining the weights of the index and the fuzzy membership degree. Constructing a multi-factor coordination index system and grading the standards for the high slope stability evaluation, comprehensively utilizing the combined subjective and objective weighting methods of the ladder level index, and considering the fuzzy and stochastic characteristics of the evaluation indices, a cloud model suitable for high slope stability multidimensional cascade evaluation is established with the aid of the fuzzy entropy and cloud theory. The left bank of the Jinping hydropower station (the first cascade) is taken as a case history to study and analyse in order to demonstrate the validity of the proposed method mentioned above, comparing with the calculated results given by various evaluation methods.
-
Key words:
- high slope /
- stability evaluation /
- cloud model /
- fuzzy entropy
-
表 1 评价指标体系及其等级标准
Table 1. Evaluation index system and its standards
评价指标 评价指标等级标准 一级指标 二级指标 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 地质因素(X1) 岩体变形模量X11(GPa) 0~1.3 6.0~1.3 20.0~6.0 20.0~30.0 33.0~50.0 岩石完整性指数X12 0~0.15 0.15~0.35 0.35~0.55 0.55~0.75 0.75~1 岩石质量指标(RQD)X13(%) 0~25 25~50 50~75 75~90 90~100 单轴抗压强度(UCS) X14(MPa) 0~25 25~50 50~100 100~250 >250 最大地应力X15(MPa) 20~25 14~20 8~14 2~8 0~2 黏聚力X16(MPa) 0~0.05 0.05~0.08 0.08~0.12 0.12~0.22 0.22~0.32 工程因素(X2) 坡高X21(m) 80~100 60~80 45~60 30~45 0~30 坡度X22(°) 60~80 45~60 35~45 20~35 0~20 支护X23 贫乏 不足 一般 充足 过多 排水X24 很差 差 一般 好 很好 环境因素(X3) 年平均降雨量X31(mm) 1 500~2 000 1 100~1 500 800~1 100 600~800 0~600 日最大降雨量X32(mm) 100~150 70~100 50~70 25~50 0~25 饱和含水率X33(%) 75~100 55~75 40~55 20~40 0~20 地震水平加速度X34(m/s2) 0.20~0.40 0.15~0.20 0.1~0.15 0.05~0.1 0~0.05 监测因素(X4) 外观变形速率X41(mm/月) 8.0~10.0 5.0~8.0 3.0~5.0 2.0~3.0 0~2.0 深部变形速率X42(mm/月) 2.0~3.0 1.5~2.0 0.8~1.5 0.3~0.8 0~0.3 锚杆测力计测值X43(%) 25~30 20~25 15~20 8.0~15.0 0~8.0 常规监测 X44 差 较差 一般 较好 好 表 2 各项评价指标的实测值和标准值
Table 2. Measured values and standard values for each evaluation index
评价指标 实测值 标准值 岩体变形模量X11(GPa) 1.90 0.038 岩石完整性指数X12 0.72 0.720 岩石质量指标X13(%) 85.00 0.850 单轴抗压强度X14(MPa) 105.00 0.420 最大地应力X15(MPa) 21.49 0.860 黏聚力X16(MPa) 0.02 0.063 坡高X21(m) 110.00 1.000 坡度X22(°) 50.00 0.625 支护X23 0.70 0.700 排水X24 0.75 0.750 年平均降雨量X31(mm) 607.00 0.304 日最大降雨量X32(mm) 49.20 0.328 饱和含水率X33(%) 13.00 0.130 地震水平加速度X34(m/s2) 0.10 0.250 外观变形速率X41(mm/月) 1.89 0.189 深部变形速率X42(mm/月) 0.27 0.090 锚杆测力计测值X43(%) 8.73 0.291 常规监测X44 0.75 0.750 表 3 各项评价指标权重
Table 3. Weights of each evaluation index
类别 W1 W W2 X1 (0.155,0.158,0.171,0.173,0.180,0.163) (0.156,0.164,0.173,0.168,0.175,0.164) (0.157,0.171,0.175,0.163,0.170,0.164) X2 (0.207,0.229,0.288,0.276) (0.229,0.240,0.268,0.263) (0.251,0.251,0.249,0.249) X3 (0.266,0.240,0.263,0.231) (0.261,0.246,0.254,0.239) (0.255,0.252,0.245,0.248) X4 (0.236,0.264,0.239,0.262) (0.242,0.250,0.249,0.259) (0.250,0.236,0.257,0.257) 表 4 二级指标的等级综合评价结果
Table 4. Grade comprehensive evaluation for second class index
二级指标 评价等级隶属度 评价结果 R(Ⅰ) R(Ⅱ) R(Ⅲ) R(Ⅳ) R(Ⅴ) X11 0.027 0.973 0 0 0 Ⅱ X12 0.018 0.954 0.028 0 0 Ⅱ X13 0 0 0 0.107 0.893 Ⅴ X14 0 0 0.003 0.475 0.522 Ⅴ X15 0 0 0 0.027 0.973 Ⅴ X16 0.782 0.218 0 0 0 Ⅰ X21 1.000 0 0 0 0 Ⅰ X22 0.915 0.085 0 0 0 Ⅰ X23 0 0 0.035 0.930 0.035 Ⅳ X24 0 0 0.003 0.932 0.065 Ⅳ X31 0 0 0.019 0.745 0.236 Ⅳ X32 0 0.026 0.396 0.550 0.028 Ⅳ X33 0 0 0.001 0.025 0.974 Ⅴ X34 0 0.077 0.431 0.458 0.034 Ⅳ X41 0 0 0.035 0.391 0.574 Ⅴ X42 0 0 0.029 0.426 0.545 Ⅴ X43 0 0 0.002 0.823 0.175 Ⅳ X44 0 0 0.016 0.616 0.368 Ⅳ 表 5 一级指标的等级综合评价结果
Table 5. Grade comprehensive evaluation for first class index
一级指标 综合隶属度 评价结果 R(Ⅰ) R(Ⅱ) R(Ⅲ) R(Ⅳ) R(Ⅴ) X1 0.135 4 0.344 0 0.005 1 0.103 0 0.412 5 Ⅴ X2 0.448 6 0.020 4 0.010 2 0.494 4 0.026 5 Ⅳ X3 0 0.024 8 0.205 6 0.445 6 0.324 0 Ⅳ X4 0 0 0.020 4 0.565 6 0.414 0 Ⅳ 表 6 不同方法高边坡稳定性评价结果的比较
Table 6. Comparison between evaluation results of high slope stability obtained from different approaches
评价方法 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 评价结果 本文方法(隶属度) 0.147 5 0.120 6 0.054 1 0.374 1 0.303 7 (Ⅳ,0.908 0) 可拓评价方法[4](关联度) -0.669 -0.558 -0.322 0.075 -0.099 Ⅳ -
[1] 邢小弟, 张磊, 谈叶飞, 等.降雨入渗过程中土质边坡稳定性计算[J].水利水运工程学报, 2014(3): 98-103. http://slsygcxb.cnjournals.org/ch/reader/view_abstract.aspx?file_no=20140315&flag=1 XING Xiaodi, ZHANG Lei, TAN Yefei, et al. Calculation method for soil slope stability under the action of precipitation infiltration[J]. Hydro-Science and Engineering, 2014(3): 98-103. (in Chinese) http://slsygcxb.cnjournals.org/ch/reader/view_abstract.aspx?file_no=20140315&flag=1 [2] 赵建军, 贺宇航, 黄润秋, 等.基于因子分析法的边坡稳定性评价指标权重[J].西南交通大学学报, 2015, 50(2): 325-330. http://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201502018.htm ZHAO Jianjun, HE Yuhang, HUANG Runqiu, et al. Weights of slope stability evaluation indexes based on factor analysis method[J]. Journal of Southwest Jiaotong University, 2015, 50(2): 325-330. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201502018.htm [3] 苏怀智, 吴中如, 戴会超, 等.三峡永久船闸高陡边坡整体稳定性的多因素综合评价[J].岩石力学与工程学报, 2005, 24(1): 23-32. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200501004.htm SU Huaizhi, WU Zhongru, DAI Huichao, et al. Multiple-index assessment for global stability of high-steep rock slope of the Three Gorges project permanent shiplock[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(1): 23-32. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200501004.htm [4] 谈小龙, 徐卫亚, 梁桂兰.可拓方法在岩石边坡整体安全评价中的应用[J].岩石力学与工程学报, 2009, 28(12): 2503-2509. doi: 10.3321/j.issn:1000-6915.2009.12.017 TAN Xiaolong, XU Weiya, LIANG Guilan. Application of extenics method to comprehensive safety evaluation of rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(12): 2503-2509. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.12.017 [5] 秦植海, 秦鹏.高边坡稳定性评价的模糊层次与集对分析耦合模型[J].岩土工程学报, 2010, 32(5): 706-711. http://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201005011.htm QIN Zhihai, QIN Peng. Evaluation coupling model for high slope stability based on fuzzy analytical hierarchy process-set pair analysis method[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5): 706-711. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201005011.htm [6] 徐飞, 徐卫亚, 刘造保, 等.基于PSO-PP的边坡稳定性评价[J].岩土工程学报, 2011, 33(11): 1708-1713. http://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201111013.htm XU Fei, XU Weiya, LIU Zaobao, et al. Slope stability evaluation based on PSO-PP[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1708-1713. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201111013.htm [7] 罗勇. 大冶铁矿露天采场岩质边坡稳定性评价体系与分析方法研究[D]. 武汉: 武汉工程大学, 2012. LUO Yong. A study of evaluation system and stability analysis of rock slope in the open pit of Daye Iron Mine[D]. Wuhan: Wuhan Institute of Technology, 2012. (in Chinese) [8] 何海鹰, 胡甜, 赵健.基于AHP的岩质高边坡风险评估指标体系[J].中南大学学报(自然科学版), 2012, 43(7): 2861-2868. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201207059.htm HE Haiying, HU Tian, ZHAO Jian. Risk assessment indexes system of high rock slope based on AHP[J]. Journal of Central South University (Science and Technology), 2012, 43(7): 2861-2868. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201207059.htm [9] 王新民, 康虔, 秦健春, 等.层次分析法-可拓学模型在岩质边坡稳定性安全评价中的应用[J].中南大学学报(自然科学版), 2013, 44(6): 2455-2462. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201306036.htm WANG Xinmin, KANG Qian, QIN Jianchun, et al. Application of AHP-extenics model to safety evaluation of rock slope stability[J]. Journal of Central South University (Science and Technology), 2013, 44(6): 2455-2462. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201306036.htm [10] LIU Z, SHAO J, XU W, et al. Comprehensive stability evaluation of rock slope using the cloud model-based approach[J]. Rock Mechanics and Rock Engineering, 2013, 47(6): 2239-2252. [11] SU H, LI J, CAO J, et al. Macro-comprehensive evaluation method of high rock slope stability in hydropower projects[J]. Stochastic Environmental Research and Risk Assessment, 2014, 28(2): 2111-2116. doi: 10.1007/s00477-013-0742-x [12] 舒苏荀, 龚文惠.边坡稳定分析的神经网络改进模糊点估计法[J].岩土力学, 2015, 36(7): 349-361. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201507047.htm SHU Suxun, GONG Wenhui. An improved fuzzy point estimate method for slope stability analysis based on neural network[J]. Rock and Soil Mechanics, 2015, 36(7): 349-361. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201507047.htm [13] 马毅, 王希良, 刘振, 等.基于模糊因素的岩质边坡地震稳定性多模型组合评价[J].岩土力学, 2011, 32(增1): 624-629. http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1110.htm MA Yi, WANG Xiliang, LIU Zhen, et al. Multiple model combination evaluation of seismic stability of rock slope based on fuzzy factors[J]. Chinese Journal of Rock and Soil Mechanics, 2011, 32(Suppl1): 624-629. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1110.htm [14] 陈滔, 邓建辉, 李林芮, 等.强烈松弛岩质边坡变形特征与稳定性评价[J].岩石力学与工程学报, 2015, 34(增1): 2607-2616. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1003.htm CHEN Tao, DENG Jianhui, LI Linrui, et al. Deformation characteristics and stability evaluation of a heavily loosened rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Suppl1): 2607-2616. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1003.htm [15] DAFTARIBESHELIA A, ATAEIB M, SERESHKIB F. Assessment of rock slope stability using the Fuzzy Slope Mass Rating (FSMR) system[J]. Applied Soft Computing, 2011, 11(8): 4465-4473. doi: 10.1016/j.asoc.2011.08.032 [16] 罗毅, 李昱龙.基于熵权法和灰色关联分析法的输电网规划方案综合决策[J].电网技术, 2013, 37(1): 76-80. http://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201301013.htm LUO Yi, LI Yulong. Comprehensive decision-making of transmission network planning based on entropy weight and grey relational analysis[J]. Power System Technology, 2013, 37(1): 76-80. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201301013.htm [17] 朱雪龙.应用信息论基础[M].北京:清华大学出版社, 2001. ZHU Xuelong. Fundamentals of applied information theory[M]. Beijing: Tsinghua University Press, 2001. (in Chinese) [18] 李健, 汪明武, 徐鹏, 等.基于云模型的围岩稳定性分类[J].岩土工程学报, 2014, 36(1): 83-87. doi: 10.11779/CJGE201401006 LI Jian, WANG Mingwu, XU Peng, et al. Classification of stability of surrounding rock using cloud model[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 83-87. (in Chinese) doi: 10.11779/CJGE201401006 [19] 帅青燕, 何亚伯.基于云模型的坝基岩体质量综合评价[J].东南大学学报(自然科学版), 2013, 43 (增1): 54-58. http://www.cnki.com.cn/Article/CJFDTOTAL-DNDX2013S1012.htm SHUAI Qingyan, HE Yabo. Comprehensive evaluation on rock quality of dam foundation based on cloud model[J]. Journal of Southeast University(Natural Science Edition), 2013, 43(Suppl1): 54-58. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-DNDX2013S1012.htm [20] 刘锋, 魏光辉.基于灰色关联的水利工程方案模糊优选[J].水力发电学报, 2012, 31(1): 10-14, 26. http://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201201003.htm LIU Feng, WEI Guanghui. Fuzzy optimization of hydraulic project scheme based on improved grey relation analysis[J]. Journal of Hydroelectric Engineering, 2012, 31(1): 10-14, 26. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201201003.htm [21] 杨光, 刘敦文, 褚夫蛟, 等.基于云模型的隧道塌方风险等级评价[J].中国安全生产科学技术, 2015, 11(6): 95-101. http://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201506017.htm YANG Guang, LIU Dunwen, CHU Fujiao, et al. Evaluation on risk grade of tunnel collapse based on cloud model[J]. Journal of Safety Science and Technology, 2015, 11(6): 95-101. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201506017.htm [22] SUN P, LIU Y, QIU X, et al. Hybrid multiple attribute group decision-making for power system restoration[J]. Expert Systems with Applications, 2015, 42: 6795-6805. doi: 10.1016/j.eswa.2015.05.001 [23] 周红梅.基于改进的AHP-PP模型的重力坝安全综合评价方法[J].水电能源科学, 2014, 32(2): 59, 90-92. http://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201402023.htm ZHOU Hongmei. Comprehensive evaluation of dam safety based on improved AHP-PP mode[J]. Water Resources and Power, 2014, 32(2): 59, 90-92. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201402023.htm -