Experimental studies of dynamic uniaxial compressive properties of concrete after freeze-thaw deterioration
-
摘要: 为研究混凝土冻融循环后的动态力学性能,利用10 MN动静三轴仪对不同冻融劣化程度的混凝土在不同加载速率下进行单轴压缩试验,同时采集声发射数据分析试验过程中能量释放及损伤演化规律。最后,选用Weibull-Lognormal损伤本构模型,对试验数据进行拟合分析,并分析不同工况混凝土的损伤随应变的发展规律。研究结果表明:①相同冻融劣化程度时,随应变速率增加,峰值应力增大,峰值应变减小;冻融劣化程度会影响峰值应力的率敏感性;②在应变速率相同时,随冻融循环次数增加,峰值应力随之减小,峰值应变随之增大。③混凝土冻融劣化后应力应变关系峰前服从Weibull统计分布,峰后服从Lognormal统计分布。④在相同应变速率下,随着冻融循环次数的增加,混凝土的累计塑性应变整体呈增大趋势。Abstract: To study the dynamic mechanical properties of concrete after freeze-thaw deterioration, the uniaxial compression tests of concrete specimens with varied freeze-thaw deterioration degrees are carried out by 10 MN triaxial static-dynamic instrument under different loading rates. The laws of the energy release and the damage evolution are analyzed by using acoustic emission. The damage development patterns of concrete with the strain under different load combinations are studied based on the Weibull-Lognormal damage constitutive model and its fitting experimental results. The results show that:①For the concrete specimens with the same freeze-thaw deterioration degree, the peak stress increases with the increase of the strain rate, while the peak strain decreases. It indicates that the freeze-thaw deterioration degrees have influences on the sensitivity of the peak stress. ②For the concrete specimens with the same strain rate, the peak stress decreases with the increase of the number of freeze-thaw cycles, while the peak strain increases. ③The stress-strain relationship of the concrete specimens after freeze-thaw deterioration is subjected to follow Weibull statistical distribution before the peak stress, and follow Lognormal statistical distribution after the peak stress. ④For the concrete specimens with the same strain rate, the accumulative plastic strain of concrete generally increases with the increase of the number of freeze-thaw cycles.
-
Key words:
- concrete /
- freeze-thaw deterioration /
- dynamic compression test /
- constitutive relation /
- damage
-
表 1 冻融劣化后试件质量损失
Table 1. Mass loss of specimens after freeze-thaw deterioration
冻融循环次数/次 0 10 20 25 30 35 40 50 平均质量/kg 65.77 65.95 65.96 65.86 65.80 65.71 65.29 65.28 质量损失/% 0 -0.274 -0.289 -0.137 -0.045 0.091 0.730 0.745 表 2 不同冻融循环次数不同加载速率下的峰值应力
Table 2. Peak stress with different strain rates and freeze-thaw cycles
MPa 冻融循环次数/次 应变速率/s-1 10-5 5×10-5 10-4 5×10-4 10-3 0 41.56 43.97(5.79%) 46.40(11.65%) 48.92(17.66%) 50.43(21.27%) 10 - - 36.33 41.80 - 25 25.68 27.91(8.68%) 29.31(14.14%) 29.50(14.87%) 31.13(21.22%) 35 - - 22.57 25.47 - 50 21.62 22.50(4.07%) 23.72(9.71%) 24.04(11.19%) 25.09(16.05%) 注:()中数值为不同应变速率下的峰值应力较应变速率为10-5/s峰值应力的增长率。 表 3 峰值应力增长因子与相对加载速率的拟合参数
Table 3. Compressive strength growth factor fitting parameter
冻融循环次数/次 a1 R2 0 0.104 7 0.989 7 25 0.103 9 0.956 3 50 0.076 0 0.968 7 表 4 峰值应力与冻融循环次数间的拟合参数
Table 4. Fitting parameters for peak stress and number of freeze-thaw cycles
应变速率/s-1 A2 B2 C2 R2 10-4 0.000 3 -0.025 0 1.112 9 0.992 1 5×10-4 0.000 3 -0.025 3 1.196 2 0.996 2 表 5 不同冻融循环次数和应变速率下的峰值应变
Table 5. Peak strains under different strain rates and number of freeze-thaw cycles
10-3 冻融循环次数/次 应变速率/s-1 10-5 5×10-5 10-4 5×10-4 10-3 0 3.823 2.710 2.850 2.583 2.491 10 - - 1.480 5.960 - 25 19.077 14.719 11.960 8.789 5.423 35 - - 13.957 14.405 - 50 21.620 18.985 17.957 15.957 13.502 表 6 混凝土峰值应变衰减因子与加载速率的拟合参数
Table 6. Fitting parameters of the peak strain decrease factor and strain rate
冻融循环次数/次 β R2 0 -0.211 2 0.982 1 25 -0.365 9 0.993 8 50 -0.184 4 0.988 3 -
[1] TEDESCO J W, POWELL J C, ROSS C A, et al. A strain-rate-dependent concrete material model for ADINA[J]. Computer & Structures, 1997, 64(5/6): 1053-1067. https://www.sciencedirect.com/science/article/pii/S0045794997000187 [2] 肖诗云, 张剑.不同应变率下混凝土受压损伤试验研究[J].土木工程学报, 2010, 43(3): 40-45. doi: 10.3969/j.issn.1009-6825.2012.05.026 XIAO Shiyun, ZHANG Jian. Compressive damage experiment of concrete at different strain rates[J]. China Civil Engineering Journal, 2010, 43(3): 40-45. (in Chinese) doi: 10.3969/j.issn.1009-6825.2012.05.026 [3] 李金玉, 曹建国, 徐文雨, 等.混凝土冻融破坏机理的研究[J].水利学报, 1999, 34(1): 41-49. http://d.wanfangdata.com.cn/Conference/274969 LI Jinyu, CAO Jianguo, XU Wenyu, et al. Study on the mechanism of concrete destruction under frost action[J]. Journal of Hydraulic Engineering, 1999, 34(1): 41-49. (in Chinese) http://d.wanfangdata.com.cn/Conference/274969 [4] 宋玉普, 覃丽坤, 张众, 等.冻融循环后混凝土双轴压的试验研究[J].水利学报, 2004(1): 95-99. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_slxb200401018 SONG Yupu, QIN Likun, ZHANG Zhong, et al. Experimental study on concrete behavior under biaxial compression after freezing and thawing cycle[J]. Journal of Hydraulic Engineering, 2004(1): 95-99. (in Chinese) http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_slxb200401018 [5] 罗昕, 卫军.冻融条件下混凝土损伤演变与强度相关性研究[J].华中科技大学学报(自然科学版), 2006, 34(1): 98-100. http://www.cqvip.com/QK/87801X/200614/22426836.html LUO Xin, WEI Jun. The correlation between concrete strength and damage evolution in freeze-thaw cycles[J]. Journal of Huazhong University of Science and Technology(Nature Science Edition), 2006, 34(1): 98-100. (in Chinese) http://www.cqvip.com/QK/87801X/200614/22426836.html [6] 祝金鹏, 李术才, 刘宪波, 等.冻融环境下混凝土力学性能退化模型[J].建筑科学与工程学报, 2009, 26(1): 62-67. doi: 10.3321/j.issn:1673-2049.2009.01.011 ZHU Jinpeng, LI Shucai, LIU Xianbo, et al. Mechanical property deterioration model for concrete in environment with freezing-thawing[J]. Journal of Architecture and Civil Engineering, 2009, 26(1): 62-67. (in Chinese) doi: 10.3321/j.issn:1673-2049.2009.01.011 [7] 曹大富, 富立志, 杨中伟, 等.冻融循环作用下混凝土受压本构特征研究[J].建筑材料学报, 2013, 16(1): 17-23, 32. http://www.cqvip.com/QK/96832A/201301/44883600.html CAO Dafu, FU Lizhi, YANG Zhongwei, et al. Study on constitutive relations of compressed concrete subjected to action of freezing-thawing cycle[J]. Journal of Building Materials, 2013, 16(1): 17-23, 32. (in Chinese) http://www.cqvip.com/QK/96832A/201301/44883600.html [8] 王海涛, 范文晓, 刘天云, 等.全级配混凝土冻融循环后单轴动态抗压性能试验研究[J].水利学报, 2015, 46(6): 732-738. http://doi.cnki.net/Resolution/Handler?doi=10.13243/j.cnki.slxb.20141422 WANG Haitao, FAN Wenxiao, LIU Tianyun, et al. Experimental study on properties of fully-graded concrete under uniaxial dynamic compressive stress state after freezing-thawing cycles[J]. Journal of Hydraulic Engineering, 2015, 46(6): 732-738. (in Chinese) http://doi.cnki.net/Resolution/Handler?doi=10.13243/j.cnki.slxb.20141422 [9] GB/T 50082—2009普通混凝土长久性和耐久性试验方法[S]. GB/T 50082—2009 Standard for test method of long-term performance and durability of ordinary concrete[S]. (in Chinese) [10] SL 352—2006水工混凝土试验规程[S]. SL 352—2006 Test code for hydraulic concrete[S]. (in Chinese) [11] 闫东明, 林皋, 徐平.三向应力状态下混凝土动态强度和变形特性研究[J].工程力学, 2007, 24(3): 58-64. https://www.wenkuxiazai.com/doc/dcacba1a6bd97f192279e9a2.html YAN Dongming, LIN Gao, XU Ping. Dynamic strength and deformation of concrete in triaxial stress states[J]. Engineering Mechanics, 2007, 24(3): 58-64. (in Chinese) https://www.wenkuxiazai.com/doc/dcacba1a6bd97f192279e9a2.html [12] 王春来, 徐必根, 李庶林, 等.单轴受压状态下钢纤维混凝土损伤本构模型研究[J].岩土力学, 2006, 27(1): 151-154. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_ytlx200601030 WANG Chunlai, XU Bigen, LI Shulin, et al. Study on a constitutive model of damage of SFRC under uniaxial compression[J]. Rock and Soil Mechanics, 2006, 27(1): 151-154. (in Chinese) http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_ytlx200601030 [13] 关虓, 牛荻涛, 王家滨, 等.基于Weibull强度理论的混凝土冻融损伤本构模型研究[J].混凝土, 2015(5): 5-9, 13. http://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201602027.htm GUAN Xiao, NIU Ditao, WANG Jiabin, et al. Study of the freezing-thawing damage constitutive model of concrete based on Weibull's strength theory[J]. Concrete, 2015(5): 5-9, 13. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201602027.htm [14] 彭刚, 王乾峰, 梁春华.有压孔隙水环境中的混凝土动态抗压性能研究[J].土木工程学报, 2015, 48(1): 11-18. http://www.cqvip.com/QK/90342X/201501/1005677410.html PENG Gang, WANG Qianfeng, LIANG Chunhua. Study on dynamic compressive properties of concrete under pore water pressure environment[J]. China Civil Engineering Journal, 2015, 48(1): 11-18. (in Chinese) http://www.cqvip.com/QK/90342X/201501/1005677410.html [15] LEMAITERE J. Local approach of fracture[J]. Engineering Fracture Mechanics, 1986, 25(5/6): 523-537. https://www.sciencedirect.com/science/article/pii/0013794486900214 [16] 张明, 李仲奎, 杨强, 等.准脆性材料声发射的损伤模型及统计分析[J].岩石力学与工程学报, 2006, 25(12): 2493-2501. doi: 10.3321/j.issn:1000-6915.2006.12.015 ZHANG Ming, LI Zhongkui, YANG Qiang, et al. A damage model and statistical analysis of acoustic emission for Quasi-Brittle materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12): 2493-2501. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.12.015 [17] TANG C A, XU X H. Evolution and propagation of material defects and Kaiser effect function[J]. Journal of Seismological Research, 1990, 13(2): 203-213. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZYJ199002011.htm [18] 杨永杰, 王德超, 郭明福, 等.基于三轴压缩声发射试验的岩石损伤特征研究[J].岩石力学与工程学报, 2014, 33(1): 98-104. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201401011.htm YANG Yongjie, WANG Dechao, GUO Mingfu, et al. Study of rock damage characteristics based on acoustic emission tests under triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 98-104. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201401011.htm -