Analysis of calculating method for horizontal bearing capacity of wing-monopile
-
摘要: 加翼桩作为海上风电基础的新型结构,目前相关研究甚少。基于ABAQUS三维数值仿真模型,对比分析了海上风电大直径单桩与加翼桩在水平荷载作用下桩身弯矩、应力、位移、泥面处桩基倾斜率、极限承载力以及破坏模式等水平承载性能。研究了大直径单桩和加翼桩桩身与翼板土压力分布,基于计算结果和桩土作用机理,参考现行规范中P-Y曲线模式,对相关系数进行修正,提出软黏土地基大直径单桩P-Y曲线。根据加翼桩翼板面积、形状、刚度和埋深等翼板参数对加翼桩水平承载性能影响的研究成果,提出基于大直径单桩承载力的软黏土地基大直径加翼桩极限承载力经验式和加翼桩翼板参数影响系数的计算式,为加翼桩的研究和运用提供了技术支撑。Abstract: The wing-monopile is a new structure of the offshore wind turbine generator foundation, on which there are few studies. Based on ABAQUS three-dimensional numerical simulation model, the horizontal bearing performances of the large diameter monopile and wing-monopile were analyzed and compared under the conditions of the horizontal loads, including the bending moment, stress, displacement, inclination rates of pile at mud surface, ultimate bearing capacity and failure mode of the pile. Based on the calculation results of soil pressure distribution on the pile and the mechanism of soil-pile interaction, the P-Y curve of the large-diameter monopile in soft clay foundation was developed by referring to the P-Y curve model in the current specification, and the correlation coefficient was corrected. According to the research results of the influences of the area, shape, stiffness and buried depth of the wing plate on the horizontal bearing capacity of the wing-monopile, the empirical formula and the calculation formulas of the correlation coefficients of the ultimate bearing capacity of the large diameter wing-monopile in soft clay foundation are presented by referring to the specifications for the bearing capacity of the large diameter monopile, which can provide a technical support for the research and application of the wing-monopile in the marine environment.
-
Key words:
- large diameter /
- wing-monopile /
- wing plate parameters /
- P-Y curve /
- bearing capacity
-
表 1 基桩模型翼板参数
Table 1. Wing plate parameters of pile foundation
编号 形状 翼板宽W/m 翼板长L/m 埋深z/m 相对刚度(EI/(E0I0)) 备注 MP - - - - 1.0 单桩 FPA 矩形 8.0(1.6D) 8.0(1.6D) 0 1.0 最大面积 FPJ 矩形 8.0(1.6D) 3.125(0.39D) 0 1.0 最佳长宽比 FPT 梯形 8.0(1.6D)~2.0(0.4D)(上~下) 5.0(D) 0 1.0 最佳形状 FPZ 正方形 5.0(D) 5.0(D) 1.0(0.2D) 1.0 最佳埋深 FPEI 正方形 5.0(D) 5.0(D) 0 2.0 最佳刚度 表 2 单桩和加翼桩水平极限承载力及相应应力
Table 2. Horizontal ultimate bearing capacity and stresses of monopile and wing-monopile
基桩编号 极限水平承载力/MN 加翼桩/单桩/% 泥面处倾斜率/‰ 桩身最大应力/MPa MP
FPA
FPJ
FPT
FPZ
FPEI8.88
14.97
13.83
14.60
13.12
12.65100
168.58
155.74
164.41
147.75
142.454.00
4.00
4.00
4.00
4.00
4.00150.64
144.05
221.77
248.04
213.42
199.70 -
[1] 王伟, 杨敏.海上风电机组地基基础设计理论与工程应用[M].北京:中国建筑工业出版社, 2014. WANG Wei, YANG Min. Theory and engineering application of foundation design for offshore wind turbine[M]. Beijing: China Construction Industry Press, 2014. (in Chinese) [2] 王曦鹏, 陈灿明, 苏晓栋, 等.水平静荷载作用下翼板对基桩工作性状影响的有限元研究[J].水道港口, 2016, 37(6): 609-614. doi: 10.3969/j.issn.1005-8443.2016.06.012 WANG Xipeng, CHEN Canming, SU Xiaodong, et al. Finite element analysis of the impact of wing plates on laterally loaded foundation pile[J]. Journal of Waterway and Harbor, 2016, 37(6): 609-614. (in Chinese) doi: 10.3969/j.issn.1005-8443.2016.06.012 [3] 王曦鹏. 加翼桩水平承载力影响因素及计算方法研究[D]. 南京: 河海大学, 2017. WANG Xipeng. Research on the influencing factors and the calculation method of the lateral bearing capacity of wing-pile[D]. Nanjing: Hohai University, 2017. (in Chinese) [4] 陈灿明, 何建新, 王曦鹏, 等.翼板刚度与埋深对加翼桩水平承载性能影响分析.水利与建筑工程学报, 2018(1): 7-12. doi: 10.3969/j.issn.1672-1144.2018.01.002 CHEN Canming, HE Jianxin, WANG Xipeng, et al. Impacts analysis of wing plate stiffness and buried depth on horizontal bearing capacity of wing-monopile. Journal of Water Resources and Architectural Engineering, 2018(1): 7-12. (in Chinese) doi: 10.3969/j.issn.1672-1144.2018.01.002 [5] 李炜, 黄旭, 赵生校, 等.海上风机基础大直径加翼单桩常重力模型试验数值仿真[J].水利水运工程学报, 2013(4): 6-11. doi: 10.3969/j.issn.1009-640X.2013.04.002 LI Wei, HUANG Xu, ZHAO Shengxiao, et al. Numerical simulation for 1g-model test of large diameter wing- monopile for offshore wind turbine[J]. Hydro-Science and Engineering, 2013(4): 6-11. (in Chinese) doi: 10.3969/j.issn.1009-640X.2013.04.002 [6] 费康, 张建伟. ABAQUS在岩土工程中的应用[M].北京:中国水利水电出版社, 2010. FEI Kang, ZHANG Jianwei. Application of ABAQUS in geotechnical engineering[M]. Beijing: China Water Conservancy and Hydropower Press, 2010. (in Chinese) [7] SY/T10030—2004海上固定平台规划、设计和推荐作法——工作应力设计法[S]. SY/T10030—2004 Recommended practice for planning designing and constructing fixed offshore platforms——working stress design[S]. (in Chinese) [8] FD003—2007风电机组地基基础设计规定[S]. FD003—2007 Design regulations on subgrade and foundation for wind turbine generator system[S]. (in Chinese) [9] 茜平一, 刘祖德.粘性土中水平荷载桩的地基极限水平反力研究[J].土木工程学报, 1996, 29(2): 10-18. doi: 10.3321/j.issn:1000-131X.1996.02.002 QIAN Pingyi, LIU Zude. Study on ultimate lateral resistance of laterally loaded piles in cohesive soil[J]. China Civil Engineering Journal, 1996, 29(2): 10-18. (in Chinese) doi: 10.3321/j.issn:1000-131X.1996.02.002 [10] 吴同坤. 加翼桩水平承载特性及土压力分布研究[D]. 南京: 河海大学, 2014. WU Tongkun. Study on horizontal bearing capacity and earth pressure distribution of wing-monopile[D]. Nanjing: Hohai University, 2014. (in Chinese) [11] JTS167-4—2012港口工程桩基规范[S]. JTS167-4—2012 Specification for pile foundation in harbor engineering[S]. (in Chinese) [12] 王元战, 贺林林.离岸深水全直桩码头水平承载力简化计算[J].水利水运工程学报, 2014(5): 14-21. doi: 10.3969/j.issn.1009-640X.2014.05.003 WANG Yuanzhan, HE Linlin. Simplified calculation methods for horizontal bearing capacity of all-vertical-piled wharf in offshore deep-water[J]. Hydro-Science and Engineering, 2014(5): 14-21. (in Chinese) doi: 10.3969/j.issn.1009-640X.2014.05.003 [13] 孙希, 黄维平.基于实测数据的海上风电大直径桩P-Y曲线研究[J].太阳能学报, 2016, 37(1): 216-211. doi: 10.3969/j.issn.0254-0096.2016.01.034 SUN Xi, HUANG Weiping. Study on measured P-Y curves of large diameter pile foundation of offshore wind power[J]. Acta Energiae Solaris Sinica, 2016, 37(1): 216-211. (in Chinese) doi: 10.3969/j.issn.0254-0096.2016.01.034 -