[1] 邢明亮, 关博文, 陈拴发, 等. 硫酸盐腐蚀与疲劳荷载联合作用下混凝土劣化特性[J]. 建筑材料学报,2013,16(2):249-254. (XING Mingliang, GUAN Bowen, CHEN Shuanfa, et al. Deterioration characteristics of concrete under sulfate erosion and fatigue load[J]. Journal of Building Materials, 2013, 16(2): 249-254. (in Chinese) doi:  10.3969/j.issn.1007-9629.2013.02.012
[2] 蒋林华, 朱承龙, 徐宁, 等. 拉伸疲劳对混凝土氯离子扩散的影响[J]. 建筑材料学报,2016,19(3):456-460. (JIANG Linhua, ZHU Chenglong, XU Ning, et al. Effect of tensile fatigue on diffusion of chloride ion in concrete[J]. Journal of Building Materials, 2016, 19(3): 456-460. (in Chinese) doi:  10.3969/j.issn.1007-9629.2016.03.007
[3] HAYNES H H, HIGHBERG R S. Concrete properties at ocean depths[J]. Journal of the Waterways,Harbors and Coastal Engineering Division, 1976, 102(4): 455-470.
[4] 谢京辉, 彭刚, 陈灯红, 等. 不同初始孔隙水压力下混凝土动态力学特性[J]. 水利水运工程学报,2017(3):99-106. (XIE Jinghui, PENG Gang, CHEN Denghong, et al. Dynamic properties of concrete under different initial pore water pressure[J]. Hydro-Science and Engineering, 2017(3): 99-106. (in Chinese)
[5] 邓媛, 邹荣华, 彭刚, 等. 孔隙水压循环次数对混凝土损伤影响[J]. 水利水运工程学报,2016(6):83-89. (DENG Yuan, ZOU Ronghua, PENG Gang, et al. Influences of pore water cycles on damage properties of concrete under triaxial compression tests[J]. Hydro-Science and Engineering, 2016(6): 83-89. (in Chinese)
[6] 王海龙, 李庆斌. 饱和混凝土静动力抗压强度变化的细观力学机理[J]. 水利学报,2006,37(8):958-962, 968. (WANG Hailong, LI Qingbin. Micro-mechanism of static and dynamic strengths for saturated concrete[J]. Journal of Hydraulic Engineering, 2006, 37(8): 958-962, 968. (in Chinese) doi:  10.3321/j.issn:0559-9350.2006.08.010
[7] 王海龙, 李庆斌. 孔隙水对湿态混凝土抗压强度的影响[J]. 工程力学,2006,23(10):141-144, 179. (WANG Hailong, LI Qingbin. Effect of pore water on the compressive strength of wet concrete[J]. Engineering Mechanics, 2006, 23(10): 141-144, 179. (in Chinese) doi:  10.3969/j.issn.1000-4750.2006.10.027
[8] 黄常玲, 刘长武, 高云瑞, 等. 孔隙水压力条件下混凝土的破坏机理[J]. 四川大学学报(工程科学版),2015,47(增刊2):76-80. (HUANG Changling, LIU Changwu, GAO Yunrui, et al. Failure mechanism of concrete under pore water pressure[J]. Journal of Sichuan University (Engineering Science Edition), 2015, 47(Suppl2): 76-80. (in Chinese)
[9] MORROW J. Cyclic plastic strain energy and fatigue of metals[M]//LAZAN B. Internal Friction, Damping, and Cyclic Plasticity. West Conshohocken, PA: ASTM International, 1965: 45-84.
[10] MARTIN D E. An energy criterion for low-cycle fatigue[J]. Journal of Fluids Engineering, 1961, 83(4): 565-576.
[11] ONOUE K, MATSUSHITA H. Reduction mechanisms of fatigue strength of concrete under compression due to permeation of liquids[J]. Construction and Building Materials, 2012, 37: 82-92. doi:  10.1016/j.conbuildmat.2012.07.010
[12] LEI D, ZHANG P, HE J T, et al. Fatigue life prediction method of concrete based on energy dissipation[J]. Construction and Building Materials, 2017, 145: 419-425. doi:  10.1016/j.conbuildmat.2017.04.030
[13] 徐世烺. 混凝土断裂力学[M]. 北京: 科学出版社, 2011.

XU Shilang. Fracture mechanics of concrete[M]. Beijing: Science Press, 2011.(in Chinese)
[14] ELLYIN F. Fatigue damage, crack growth, and life prediction[M]. New York: Chapman and Hall, 1997.
[15] MAZARI M, BOUCHOUICHA B, ZEMRI M, et al. Fatigue crack propagation analyses based on plastic energy approach[J]. Computational Materials Science, 2008, 41(3): 344-349. doi:  10.1016/j.commatsci.2007.04.016
[16] PERDIKARIS P C, CALOMINO A M, CHUDNOVSKY A. Effect of fatigue on fracture toughness of concrete[J]. Journal of Engineering Mechanics, 1986, 112(8): 776-791. doi:  10.1061/(ASCE)0733-9399(1986)112:8(776)
[17] DATTOMA V, GIANCANE S. Evaluation of energy of fatigue damage into GFRC through digital image correlation and thermography[J]. Composites Part B: Engineering, 2013, 47: 283-289.
[18] SHADMAN M, ZIARI H. Laboratory evaluation of fatigue life characteristics of polymer modified porous asphalt: A dissipated energy approach[J]. Construction and Building Materials, 2017, 138: 434-440. doi:  10.1016/j.conbuildmat.2017.02.043
[19] SHAH S G. Fracture and fatigue behavior of concrete-concrete interfaces using acoustic emission, digital image correlation and micro-indentation techniques[D]. Bangalore: Indian Institute of Science, 2009.
[20] FATHIMA K M P, KISHEN J M C. Prediction of fatigue life in plain concrete using entropy production[J]. Journal of Engineering Mechanics, 2015, 141(7): 04015007. doi:  10.1061/(ASCE)EM.1943-7889.0000936
[21] JENQ Y, SHAH S P. Two parameter fracture model for concrete[J]. Journal of Engineering Mechanics, 1985, 110(10): 1227-1241.
[22] 吴智敏, 杨树桐, 郑建军. 混凝土等效断裂韧度的解析方法及其尺寸效应[J]. 水利学报,2006,37(7):795-800. (WU Zhimin, YANG Shutong, ZHENG Jianjun. Analytical method for predicting effective fracture toughness of concrete and its size effect[J]. Journal of Hydraulic Engineering, 2006, 37(7): 795-800. (in Chinese) doi:  10.3321/j.issn:0559-9350.2006.07.005
[23] HU S W, LU J. Experimental research and analysis on double-K fracture parameters of concrete[J]. Advanced Science Letters, 2012, 12(1): 192-195. doi:  10.1166/asl.2012.2806
[24] 李世愚, 和泰名, 尹祥础. 岩石断裂力学导论[M]. 合肥: 中国科学技术大学出版社, 2010.

LI Shiyu, HE Taiming, YIN Xiangchu. Introduction of rock fracture mechanics[M]. Hefei: University of Science and Technology of China Press, 2010.(in Chinese)
[25] 张鹏, 孙志伟, 赵铁军, 等. 海水环境下混凝土的断裂能及其应变软化[J]. 土木建筑与环境工程,2010,32(1):72-77. (ZHANG Peng, SUN Zhiwei, ZHAO Tiejun, et al. Fracture energy and strain softening of concrete under seawater environment[J]. Journal of Civil, Architectural and Environmental Engineering, 2010, 32(1): 72-77. (in Chinese)