Abstract:
As the infrastructure of offshore wind power developed in recent years, the stability of the multi-compartment cylindrical foundation impacts on the fan’s safety greatly. In order to study the stability of cylindrical foundation under extreme wind load, the AR autoregression linear filtering method was applied to simulate the fluctuating wind speed spectrum in the study, and the boundary surface elastoplastic dynamic constitutive model and the large-scale finite element analysis software ABAQUS were used to analyze the 3D dynamic value, and study the settlement development of the structure under the random wind load, dynamic response and the pore pressure change of surrounding soil. The study indicated: as the loading continued, the cylindrical horizontal displacement, rotation angle and vertical displacement all trended to increase slowly, meanwhile, the cylindrical top horizontal displacement was much larger than that in the end; affected by the subdivision plate, the pore pressure of the soil in the foundation developed slowly and was smaller than that outside the foundation; along the cylindrical diameter, the closer to the cylinder wall, the greater the pore pressure was; on the out side of the foundation, the pore pressure of the soil decreased gradually with the buried depth, and finally tended to be stable; the stress path of soil was gradually close to the critical state line, but did not reach the failure standard.