通州湾规划港区对台风暴潮的冲淤响应研究

Response of the erosion and siltation in the planning port area in the Tongzhou Bay to storm surges induced by typhoons

  • 摘要: 基于ADCIRC+SWAN模式和Delft3D+SWAN模式建立双层嵌套的通州湾及周边海域的水沙动力数学模型。根据路径特征将影响通州湾的所有台风分为5类,选取每类的代表性台风驱动模型,模拟不同类型台风期间通州湾规划港区及周边水道沙洲系统的泥沙冲淤情况,剖析水道沙洲系统对台风暴潮的响应。结果表明:台风造成的通州湾规划港区及周边水道沙洲冲淤变化总体不大,在±0.40 m以内;北侧掠过型和东侧掠过型台风引起的海域冲淤相对较大;从空间分布上看,三港池口门附近及口外航道内容易淤积,腰沙、冷家沙浅滩区容易侵蚀。风暴期间港区北部冷家沙外侧水道出现严重淤积,原冷家沙浅滩区出现显著侵蚀,虽然一场风暴过程的冲淤量不足以影响港口运营及通航,但需注意长期时间尺度上对总体冲淤趋势的影响。

     

    Abstract: A nested morphodynamic model of the Tongzhou Bay and its surrounding sea areas is set up with ADCIRC+SWAN and Delft3D+SWAN models. All Typhoons that affected the Tongzhou Bay during 1949 to 2019 are classified into five types according to the characteristics of their tracks, and for each type a typical typhoon is selected to drive the model. The morphodynamic changes of the study area induced by the typical typhoons are simulated, and the responses of channel-sand system in Tongzhou Bay and its surrounding sea areas to storm surges are analyzed. The results show that the thickness of sediment erosion and deposition in the planning port area during a typical typhoon process is generally small, within about ±0.40 m. The erosion and sedimentation induced by the north-passing typhoon and the east-passing typhoon are relatively large. Generally, siltation usually occurs outside the entrance of the Basin 3 of the Tongzhou Bay port area, while erosion usually occurs in the Yaosha and Lengjiasha shoals. After a typhoon process, obvious siltation occurred in the outer channel of Lengjiasha in the north of the port area, and obvious erosion occurred in the original Lengjiasha shoal area. Although the amount of siltation/erosion induced by one storm process is not large enough to affect the port operation and navigation, attention should be paid to the impacts of such siltation/erosion in a long-term time scale.

     

/

返回文章
返回