基于XGBoost算法的堆石料南水模型参数反演及应用

NHRI model parameter inversion and application of rockfill based on XGBoost

  • 摘要: 基于坝体原位监测资料反演分析坝料参数是获取坝料参数真实值的有效途径。针对面板堆石坝堆石料南水模型参数反演中的多材料、多参数问题,提出了基于XGBoost算法的参数反演法。首先通过正交试验进行参数敏感性分析,精简待反演参数,进一步通过正交试验建立机器学习样本集,在对不同机器学习模型训练结果进行比较的基础上,提出基于XGBoost算法利用坝体变形监测数据对坝体堆石料南水模型参数进行反演,并对利用反演参数计算所得的变形结果与实际监测结果进行比较。结果表明:XGBoost算法相较于决策树等算法更具优势,结合正交试验可有效减少有限元计算次数,提高计算效率及准确性;利用反演参数所得的计算结果与实际监测结果有较好的一致性。

     

    Abstract: Based on the in-situ monitoring data of the dam, back analysis of the material parameters is an effective way to obtain the real parameters. Aiming at the problem of multi-material and multi-parameter back analysis in the NHRI model parameter back analysis of concrete faced rockfill dam, a parameter back analysis method based on XGBoost was proposed. We first conducted parameter sensitivity analysis through orthogonal test, simplified the parameters to be inverted, and further established a machine learning sample set through orthogonal test. On the basis of comparing the training results of different machine learning models, XGBoost was proposed to use dam deformation monitoring data to inverse the NHRI model parameters of dam rockfill. The deformation results calculated by inversion parameters were compared with the actual monitoring results. The results show that XGBoost algorithm has more advantages than other algorithms such as decision tree algorithm. The combination of orthogonal test can effectively reduce the number of finite element calculations and improve the calculation efficiency and accuracy. The calculated results of inversion parameters are in good agreement with the actual monitoring results.

     

/

返回文章
返回