深度学习法检测大坝安全监测异常数据

Algorithm utilizing deep learning to identify anomalous data in the monitoring of dam safety

  • 摘要: 有效检测出异常数据在大坝安全监测领域具有重要意义,但传统方法检测时受异常数据偏离大小和数量影响,鲁棒性较差。提出一种基于深度学习的大坝安全监测异常数据检测算法,模拟人工识别异常数据的过程,按分类和识别两个阶段检测异常数据,适用于检测变化趋势不确定的数据,其中标签数据集采取自动制作方式,具备反馈机制。试验结果表明该算法对各类异常添加模式的试验数据查准率平均达到0.97以上,查全率平均达到0.97以上,准确率平均达到0.99以上,尤其能有效找出小数值异常,比传统异常数据检测方法具有更好的检测稳定性、鲁棒性和实用性。

     

    Abstract: Efficiently detecting abnormal data holds crucial importance in dam safety monitoring. Traditional methods exhibit instability in quantifying deviation sizes. This paper introduces a deep learning-based algorithm for identifying abnormal data in dam safety monitoring. It mimics the manual identification process, employing classification and identification stages for detecting abnormal data. This approach is adept at handling data with uncertain change trends, generating labeled datasets through a feedback mechanism. Experimental results demonstrate the algorithm’s commendable performance, with an average accuracy rate exceeding 0.97 and a full rate of 0.97 or higher. Notably, it achieves an accuracy rate exceeding 0.99 for various types of anomalous addition patterns, particularly excelling in identifying small value anomalies. Compared to traditional methods, this algorithm exhibits superior detection stability, robustness, and practicality in anomaly data detection.

     

/

返回文章
返回