多模型融合监控重力式航道防护堤变形

Multi-model fusion for monitoring deformation of gravity-type channel protection dikes

  • 摘要: 航道防护堤变形受多种不确定性因素的影响,单一数学模型不能充分挖掘和利用监测数据包含的有效信息,无法准确描述和监控结构变形行为,因此存在预测精度较低和监控误警率较高等缺陷。采用序贯蒙特卡洛(SMC)近似贝叶斯方法对8种常用的水工结构变形监控模型进行参数概率分布估计和模型后验概率计算,以模型后验概率作为融合权重建立充分利用各单一模型优势的集成监控模型。某航电工程混凝土防护堤实例分析表明,该方法所建立的航道防护堤变形多模型融合在线监控模型能更准确描述其变形规律和趋势,预测精度相比各单一模型明显提升,监控误警率显著降低。多模型融合监控技术通过概率权重合理融合多种不同形式的数学模型,能有效弥补各单一模型的性能缺陷,降低变形监控的不确定性,提高安全预警准确性,为航道防护堤变形监控提供了新思路和新方法。

     

    Abstract: Deformation of channel protection dikes is influenced by numerous uncertainties, making it difficult for a single mathematical model to fully exploit and utilize the valuable information contained in monitoring data. This limitation results in low prediction accuracy and high false alarm rates in monitoring efforts. To address these challenges, this study applies the sequential Monte Carlo (SMC) approximate Bayesian method to estimate parameter probability distributions and calculate the posterior probabilities of eight commonly used hydraulic structure deformation monitoring models. The posterior probabilities are then employed as fusion weights to construct an ensemble monitoring model that maximizes the advantages of each individual model. A case study on a concrete protection dike in a hydropower project demonstrates that the multi-model fusion online monitoring model established by this method provides a more accurate description of deformation patterns and trends. Compared to individual models, it significantly improves prediction accuracy and reduces false alarm rates. By reasonably integrating different mathematical models through probabilistic weighting, the multi-model fusion monitoring technique effectively compensates for the shortcomings of individual models, reduces uncertainties in deformation monitoring, enhances the accuracy of safety warnings, and offers new ideas and methods for monitoring the deformation of channel protection dikes.

     

/

返回文章
返回