Abstract:
The typhoon waves play an important role in the coastal engineering. In order to improve the typhoon wind field simulation accuracy, different maximum wind speed radius formulae and
B parameters are calculated based on Holland wind field model. Comparisons between the modeled and the observed data are made in this study. From the research results it is found that the Willoughby wind radius formula combined with Vickery
B parameter formula has generated a minimum error, improving the accuracy of wind field. A SWAN wave model with optimal wind field parameters is applied to simulate the No. 1323 typhoon waves. Simulation results show a satisfactory qualitative agreement with the measured wave height. The analysis results show that when the typhoon landed, the significant wave height of the Wenzhou region was obviously higher than that of other areas. The value of the significant wave height exceeded 10 m. The wave height distribution contour lines near the shore was relatively dense. On the right side of the moving direction of the typhoon, the significant wave height was higher. After moving inland, the typhoon wave height decreased quickly and reduced to 4 m or so.