Abstract:
The simulation of hydro-meteorological analysis and hydrological process in the representative watersheds is of great importance for water resources assessment in the Yellow River basin. In this study, the Mann-Kendall and
T-testing methods are used to analyze the variation characteristics of annual precipitation, runoff and temperature series in seven typical watersheds of the Yellow River basin. The VIC model, Xin'anjiang model, WBM model and GR4J model are applied to simulate the runoff processes. The simulated results show that the mean annual temperature of all the typical watersheds significantly increases, while the variation trends of the annual precipitation are not significant. As a result of environmental changes, the annual runoff series indicate a decreasing trend with abrupt changes mostly occurring in 1980s. It is found from the model simulation results that the four hydrological models mentioned above are well applied in the runoff simulation in the Yellow River Basin. As far as Nash-Sutcliffe efficiency coefficient is concerned, the simulated runoff process given by the VIC and Xin'anjiang models is closer to the measured runoff process because they consider the runoff generation and concentration process in detail. So far as relative errors of runoff are concerned, the WBM model, with a simple structure, performs better in water quantity simulation calculation, and is more suitable for the simulation and evaluation of water resources in the large-scale river basins.