半无限饱和土内部作用集中力的初值解

Initial solution of semi-infinite saturated soil loaded by internal concentrated force

  • 摘要: 应用 Mc Namee和 Schiffman位移函数把轴对称和非轴对称的 Biot固结方程解耦为一组偏微分方程 .利用半无限饱和土受集中力作用、体积应变为零的起始条件 ,得出了起始时刻的控制方程 .对该方程进行 Hankel变换 ,并利用半无限饱和土表面的边界条件以及集中力作用面处的连续性条件 ,可得出变换域内的位移、应力和孔隙水压力的解 .进行相应的逆变换后 ,可得集中力作用下饱和土起始时刻的位移、应力和孔隙水压力的封闭形式解

     

    Abstract: By using McNamee and Schiffman displacement functions, the axial symmetry and non axial symmetry Biot consolidation equations can be reduced to a group of uncoupled partial differential equations . The governing equations of the initial problems can be established considering the initial condition of the loaded saturated half space. By utilizing the Hankel transform technique and boundary conditions of the half space surface and continuous conditions at the plane of the concentrated force acting, the displacements, stresses and pore pressure expressions can be obtained in the transform domain. The closed form initial solutions of the loaded half space can be got in terms of the inverse Hankel transforms.

     

/

返回文章
返回