用半离散中心迎风格式计算一维浅水方程

陈建忠,史忠科

陈建忠,史忠科. 用半离散中心迎风格式计算一维浅水方程[J]. 水利水运工程学报, 2007, (1): 7-11.
引用本文: 陈建忠,史忠科. 用半离散中心迎风格式计算一维浅水方程[J]. 水利水运工程学报, 2007, (1): 7-11.
CHEN Jian-zhong,SHI Zhong-ke. Numerical solution of one-dimensional shallow water equations by semi-discrete central-upwind scheme[J]. Hydro-Science and Engineering, 2007, (1): 7-11.
Citation: CHEN Jian-zhong,SHI Zhong-ke. Numerical solution of one-dimensional shallow water equations by semi-discrete central-upwind scheme[J]. Hydro-Science and Engineering, 2007, (1): 7-11.

用半离散中心迎风格式计算一维浅水方程

基金项目: 

国家自然科学基金

详细信息
  • 中图分类号: TV131.3 TV131.4

Numerical solution of one-dimensional shallow water equations by semi-discrete central-upwind scheme

  • 摘要: 将半离散中心迎风数值通量和三阶WENO重构结合起来,由此得到了一种求解一维浅水方程的高分辨率数值方法.对底坡项的离散保证了计算方法的和谐性,离散摩阻项的方法简单有效.时间的离散采用保持强稳定性质的Runge-Kutta方法.应用文中方法对几个典型算例进行检验计算,结果表明本文方法健全,而且对激波具有较高的分辨率.
    Abstract: A high-resolution method for solving one-dimensional shallow water equations is presented by combing the semi-discrete central-upwind numerical flux with the third-order weighted essentially non-oscillatory(WENO) reconstruction.The discretization of bottom topography assures well-balanced approximation and the discretization of friction slop is simple and effective.The third-order strong stability preserving Runge-Kutta method is used for time discretization.Validity of several typical samples show that this method is effective and has high precision for shock waves.
计量
  • 文章访问数:  627
  • HTML全文浏览量:  36
  • PDF下载量:  596
  • 被引次数: 0
出版历程
  • 修回日期:  2006-07-12
  • 刊出日期:  2014-06-29

目录

    /

    返回文章
    返回