Development and application of dynamic safety risk analysis system for super-high concrete arch dam
-
摘要: 针对特高拱坝运维期内结构安全风险的动态性和复杂性,以及失事后果严重性,基于层次分析法、模糊理论和定量风险评估分析法,利用SQL Server数据库和Visual C#.NET编程技术,研发了一套特高拱坝动态安全风险分析系统。根据特高拱坝的荷载结构特性、安全监测仪器种类繁多和安全监测体系布置复杂的特点,构建了适应不同监测类型和大量安全监测数据的数据库,以及基于监测数据、巡视检查和物探检测的特高拱坝安全综合评价体系,确定特高拱坝事故发生的可能性级别。借助当量法量化分析事故损失,并以此确定损失的级别。最后结合特高拱坝事故发生的可能性级别和由此引起的损失级别,通过风险矩阵评估特高拱坝动态安全风险等级。Abstract: In view of the dynamics and complexity of structural safety risk and the seriousness of accident consequences during the operation and maintenance of the super-high concrete arch dams, a dynamic safety risk analysis system for the super-high concrete arch dam is developed based on the analytic hierarchy process, fuzzy theory and quantitative risk assessment analysis method, by using the SQL Server database and Microsoft Visual C#. NET programming technology. According to the load structure characteristics of the super-high concrete arch dams and the characteristics of various kinds of the safety monitoring instruments and complex layout of the safety monitoring system, a database adapted to different monitoring types and massive safety monitoring data is established. Based on the comprehensive evaluation system of the monitoring data, inspection and geophysical detection for the safety of the super-high concrete arch dam, the probability level of the accident of the super-high concrete arch dam is determined. The economic losses and the impacts on the social environment caused by dam accidents are quantitatively analyzed by means of an equivalent method to determine the loss level. Finally, the risk matrix is used to evaluate the dynamic safety risk level of the super-high concrete arch dam according to the probability level of occurrence of the accident and the loss level caused by the dam accident.
-
表 1 风险矩阵
Table 1. Risk matrix
安全等级 不同损失下的风险等级 轻度损失 中度损失 重大损失 不安全(检查) 3 4 5 基本安全(关注) 2 3 4 安全可靠(正常) 1 2 3 注:表中1~5分别代表从小(风险最低)到大(风险最高)的不同风险等级。 -
[1] 水利部, 国家统计局. 第一次全国水利普查公报[M]. 北京: 中国水利水电出版社, 2013. Ministry of Water Resources, National Bureau of Statistics. Bulletin of first national census for water[M]. Beijing: China Water Power Press, 2013. (in Chinese) [2] 孙玮玮, 李雷. 基于模糊数学理论的大坝风险后果综合评价[J]. 水利水运工程学报,2010(4):16-20. (SUN Weiwei, LI Lei. Comprehensive hazard assessment model for consequences caused by dam failure based on fuzzy mathematics method[J]. Hydro-Science and Engineering, 2010(4): 16-20. (in Chinese) doi: 10.3969/j.issn.1009-640X.2010.04.004 [3] 李升. 大坝安全风险管理关键技术研究及其系统开发[D]. 天津: 天津大学, 2012. LI Sheng. Key technology research and system development of dam safety risk management[D]. Tianjin: Tianjin University, 2012. (in Chinese) [4] 彭雪辉, 盛金保, 李雷, 等. 我国水库大坝风险标准制定研究[J]. 水利水运工程学报,2014(4):7-13. (PENG Xuehui, SHENG Jinbao, LI Lei, et al. Research on dam risk criteria of China[J]. Hydro-Science and Engineering, 2014(4): 7-13. (in Chinese) doi: 10.3969/j.issn.1009-640X.2014.04.002 [5] 赵博剑, 孔德琨, 谭忠盛. 基于层次分析理论的宜万铁路隧道病害评价体系[J]. 土木工程学报,2017,50(增刊2):243-248. (ZHAO Bojian, KONG Dekun, TAN Zhongsheng. Yichang-Wanzhou railway tunnel disease evaluation system based on analytic hierarchy process[J]. China Civil Engineering Journal, 2017, 50(Suppl2): 243-248. (in Chinese) [6] 范英, 李辰, 晋民杰, 等. 三角模糊数和层次分析法在风险评价中的应用研究[J]. 中国安全科学学报,2014,24(7):70-74. (FAN Ying, LI Chen, JIN Minjie, et al. Research on application of triangular fuzzy number and AHP in risk evaluation[J]. China Safety Science Journal, 2014, 24(7): 70-74. (in Chinese) [7] 岳强, 刘福胜, 刘仲秋. 基于模糊层次分析法的平原水库健康综合评价[J]. 水利水运工程学报,2016(2):62-68. (YUE Qiang, LIU Fusheng, LIU Zhongqiu. Comprehensive assessment of plain reservoir health based on fuzzy and hierarchy analyses[J]. Hydro-Science and Engineering, 2016(2): 62-68. (in Chinese) [8] 段存国. 岸堤水库大坝安全模糊评价应用研究[D]. 济南: 山东大学, 2011. DUAN Cunguo. Study on application of fuzzy assessment to dam safety of reservoir[D]. Ji’nan: Shandong University, 2011. (in Chinese) [9] 刘阳, 向波, 张建经, 等. 公路边坡地震失稳规模模糊综合统计评估[J]. 中国安全科学学报,2018,28(4):169-174. (LIU Yang, XIANG Bo, ZHANG Jianjing, et al. Fuzzy comprehensive statistical assessment of highway slope seismic instability scale[J]. China Safety Science Journal, 2018, 28(4): 169-174. (in Chinese) [10] 冯学慧. 基于熵权法与正态云模型的大坝安全综合评价[J]. 水电能源科学,2015,33(11):57-60. (FANG Xuehui. Evaluation of dam safety based on cloud model and entropy weight method[J]. Water Resources and Power, 2015, 33(11): 57-60. (in Chinese) [11] NI H H, CHEN A, CHEN N. Some extensions on risk matrix approach[J]. Safety Science, 2010, 48(10): 1269-1278. doi: 10.1016/j.ssci.2010.04.005 [12] 顾冲时, 苏怀智, 刘何稚. 大坝服役风险分析与管理研究述评[J]. 水利学报,2018,49(1):26-35. (GU Chongshi, SU Huaizhi, LIU Hezhi. Review on service risk analysis of dam engineering[J]. Journal of Hydraulic Engineering, 2018, 49(1): 26-35. (in Chinese) [13] 张超, 张社荣, 崔溦, 等. 地下洞室群围岩稳定性动态风险分析及系统研发[J]. 水利水运工程学报,2015(3):73-80. (ZHANG Chao, ZHANG Sherong, CUI Wei, et al. Dynamic risk analysis and system development for stability of surrounding rock of underground carven group[J]. Hydro-Science and Engineering, 2015(3): 73-80. (in Chinese) -