2D numerical simulation of hydrodynamic characteristics of water flowing around inland river frame wharf in tandem and parallel arrangement
-
摘要: 桩柱绕流水动力特性直接决定水流对桩柱作用力的分布规律,是内河框架码头水流荷载计算的基础。结合计算流体动力学(CFD),依托内河框架码头实际工程,进行了内河框架码头大直径桩柱串列及并列4桩柱绕流水动力特性的二维数值模拟,系统分析了不同流速及不同桩间距下桩柱绕流尾流流场形态,揭示了桩柱绕流阻力系数、升力系数、斯特劳哈尔数随桩间距和流速的变化规律。研究了串列及并列4桩柱绕流流场形态和水动力特性,不同流速及不同桩间距下的遮流影响效应、遮流影响系数以及横向影响系数的变化。数值模拟与分析结果可为计算类似内河框架码头水流荷载提供一定的技术参考。Abstract: The hydrodynamic characteristics of the flow around the pile-columns directly determine the distribution of the flow force acting on the piles, which is the basis of the flow loads on the inland river frame wharf. Using the computational fluid dynamic (CFD) method, and based on the practical works located at the inland river frame wharf, a two-dimensional numerical simulation model is developed to investigate the hydrodynamic characteristics of the flow around the large diameter four pile-columns arrayed in tandem and parallel or perpendicular to the flow direction. The wake flow field around pile-columns under the conditions of different flow velocities and pile spacings is analyzed systematically. The change law of the flow resistance coefficient, the lift coefficient and the Strouhal number with the flow velocity U and the pile spacing L is revealed. And some studies of the flow field shape and hydrodynamic characteristics of four pile-columns in tandem and parallel arrangement, the influence effects of flow shielding, the influence coefficient of flow shielding and the change of transverse (lateral) influence coefficient at different velocities and the pile spacings are carried out. The results of numerical simulation and analysis can provide some technical references for the calculation of flow loads on the similar pile-columns structures located in the inland river frame wharves.
-
表 1 单圆柱绕流计算结果与文献对比
Table 1. Comparison between single-cylinder flow results and literatures
计算来源 Re/106 $ \overline {{C_{\rm{d}}}} $ Cl Sr 计算来源 Re/106 $ \overline {{C_{\rm{d}}}} $ Cl Sr 本文 2 0.43 0.27 0.18 Ong等[4] 1 0.52 0.09 0.28 4 0.42 0.28 0.34 3.6 0.46 0.08 0.31 Catalano等[12] 1 0.41 — Ai Yanhui等[13] 1.24 0.46 0.38~0.40 0.29 2 0.42 — 0.31 沈立龙等[11]
(码头现场监测)1~4 0.30~0.45 — — 4 0.46 — 港口工程荷载规范[14] — 0.72 — — 表 2 不同桩间距下串列4圆柱绕流各桩柱遮流影响系数
Table 2. Influence factors of obstruction of each pile in tandem pile-columns under different pile spacings
桩编号 不同桩间距的遮流影响系数 2D 3D 4D 5D 7D 9D 13D 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2 0.63 0.79 0.63 0.54 0.63 0.66 0.74 3 0.38 1.57 1.37 0.56 0.72 0.73 0.78 4 0.79 1.81 2.12 0.94 0.72 0.72 0.72 表 3 不同流速下串列4圆柱绕流主要系数统计(L=4D)
Table 3. Statistics of main coefficients of flow around four cylinders in tandem at different flow rates (L=4D)
流速 桩编号 Cd Cl Sr 流速 桩编号 Cd Cl Sr 2 m/s
(Re=4×106)1 0.311 0.13 0.341 1 m/s
(Re=2×106)1 0.335 0.26 0.159 2 0.196 0.80 0.318 2 0.210 0.90 0.227 3 0.425 1.30 0.226 3 0.430 1.30 0.132 4 0.540 2.10 0.230 4 0.330 1.50 0.068 表 4 不同流速下并列4圆柱绕流主要系数统计(L=4D)
Table 4. Main coefficient statistics of flow around parallel four- cylinders at different flow rates (L=4D)
流速 桩编号 Cd Cl Sr 流速 桩编号 Cd Cl Sr 2 m/s (Re=4×106) 1 0.343 0.180 0.409 1 m/s (Re=2×106) 1 0.354 0.170 0.227 2 0.365 0.198 0.400 2 0.375 0.186 0.227 3 0.366 0.189 0.409 3 0.377 0.189 0.227 4 0.344 0.180 0.409 4 0.354 0.170 0.227 -
[1] 刘明维, 李鹏飞, 陈刚, 等. 内河框架码头构件重要性评价[J]. 水利水运工程学报,2015(1):1-7. (LIU Mingwei, LI Pengfei, CHEN Gang, et al. Importance evaluation and weak link analysis for members of overhead vertical wharfs located at inland rivers[J]. Hydro-Science and Engineering, 2015(1): 1-7. (in Chinese) [2] 邱驹. 港工建筑物[M]. 天津: 天津大学出版社, 2005: 30-31. QIU Ju. Port construction[M]. Tianjin: Tianjin University Press, 2005: 30-31. (in Chinese) [3] DEHKORDI B G, MOGHADDAM H S, JAFARI H H. Numerical simulation of flow over two circular cylinders in tandem arrangement[J]. Journal of Hydrodynamics (SerB), 2011, 23(1): 114-126. doi: 10.1016/S1001-6058(10)60095-9 [4] ONG M C, UTNES T, HOLMEDAL L E, et al. Numerical simulation of flow around a smooth circular cylinder at very high Reynolds numbers[J]. Marine Structures, 2009, 22(2): 142-153. doi: 10.1016/j.marstruc.2008.09.001 [5] 刘松, 符松. 串列双圆柱绕流问题的数值模拟[J]. 计算力学学报,2000,17(3):260-266. (LIU Song, FU Song. Numerical simulation of flow past two cylinders in tandem arrangement[J]. Chinese Journal of Computational Mechanics, 2000, 17(3): 260-266. (in Chinese) doi: 10.3969/j.issn.1007-4708.2000.03.002 [6] 刘景伟, 郭海燕, 赵婧, 等. 等直径串列双圆柱体绕流的数值模拟[J]. 中国海洋大学学报,2013,43(12):92-97. (LIU Jingwei, GUO Haiyan, ZHAO Jing, et al. Numerical simulation of flow around two tandem circular cylinders of equal diameter[J]. Periodical of Ocean University of China, 2013, 43(12): 92-97. (in Chinese) [7] 樊娟娟, 唐友刚, 张若瑜, 等. 高雷诺数下圆柱绕流与大振幅比受迫振动的数值模拟[J]. 水动力学研究与进展(A辑),2012,27(1):24-32. (FAN Juanjuan, TANG Yougang, ZHANG Ruoyu, et al. Numerical simulation of viscous flow around circular cylinder at high Reynolds numbers and forced oscillating at large ratio of amplitude[J]. Chinese Journal of Hydrodynamics (SerA), 2012, 27(1): 24-32. (in Chinese) [8] PRSIC M A, ONG M C, PETTERSEN B, et al. Large Eddy Simulations of flow around a smooth circular cylinder in a uniform current in the subcritical flow regime[J]. Ocean Engineering, 2014, 77: 61-73. doi: 10.1016/j.oceaneng.2013.10.018 [9] 周强, 曹曙阳, 周志勇. 亚临界雷诺数下圆柱体尾流结构的数值模拟[J]. 同济大学学报(自然科学版),2013,41(1):33-38. (ZHOU Qiang, CAO Shuyang, ZHOU Zhiyong. Numerical studies of wake characteristics on a circular cylinder at sub-critical Reynolds number[J]. Journal of Tongji University (Natural Science), 2013, 41(1): 33-38. (in Chinese) doi: 10.3969/j.issn.0253-374x.2013.01.006 [10] 贾晓荷, 刘桦. 双圆柱绕流的大涡模拟[J]. 水动力学研究与进展(A辑),2008,23(6):625-632. (JIA Xiaohe, LIU Hua. Large eddy simulation of flow around two circular cylinders[J]. Chinese Journal of Hydrodynamics (SerA), 2008, 23(6): 625-632. (in Chinese) [11] 沈立龙. 内河架空直立式码头桩柱水动力特性现场测试研究[D]. 重庆: 重庆交通大学, 2015. SHEN Lilong. Field testing study on pile hydrodynamic characteristics of inland river suspended vertical wharf[D]. Chongqing: Chongqing Jiaotong University, 2015. (in Chinese) [12] CATALANO P, WANG M, IACCARINO G, et al. Numerical simulation of the flow around a circular cylinder at high reynolds numbers[J]. International Journal of Heat and Fluid Flow, 2003, 24(4): 463-469. doi: 10.1016/S0142-727X(03)00061-4 [13] AI Y H, FENG D K, YE H K, et al. Unsteady numerical simulation of flow around 2-D circular cylinder for high reynolds numbers[J]. Journal of Marine Science and Application, 2013, 12(2): 180-184. doi: 10.1007/s11804-013-1183-0 [14] 中华人民共和国交通运输部. 港口工程荷载规范: JTS 144-1−2010[S]. 北京: 人民交通出版社, 2011. Ministry of Transport of the People's Republic of China. Load code for harbour engineering: JTS 144-1−2010[S]. Beijing: China Communications Press, 2011. (in Chinese) [15] ZDRAVKOVICH M M. Flow induced oscillations of two interfering circular cylinders[J]. Journal of Sound and Vibration, 1985, 101(4): 511-521. doi: 10.1016/S0022-460X(85)80068-7 [16] ZDRAVKOVICH M M. The effects of interference between circular cylinders in cross flow[J]. Journal of Fluids and Structures, 1987, 1(2): 239-261. doi: 10.1016/S0889-9746(87)90355-0 [17] 蒋仁杰. 圆柱绕流场涡致柱体振动的研究[D]. 杭州: 浙江大学, 2013. JIANG Renjie. Research on vortex-induced vibrations in the flow around circular cylinders[D]. Hangzhou: Zhejiang University, 2013. (in Chinese) -