Geometrical modelling with finite element method and slope effect of geosynthetic reinforced and pile-supported embankments
-
摘要: 桩承式加筋路堤常用的有限元几何建模方法包括单桩模型(含轴对称模型和单桩3D模型)、平面应变模型和3D断面模型,这些模型各具特点且前提假设各不相同,但却缺乏对比研究。使用非线性有限元软件ABAQUS结合现场试验结果进行了几何建模,对比分析了基于大面积堆载假定的模型与带边坡3D断面模型应力分布及变形的差异与原因。计算表明:3D断面模型最能反映桩承式加筋路堤真实工况,而单桩模型及大面积3D断面模型均低估了沉降量。边坡效应引起的水平位移及坡外隆起使得桩土沉降差、平均桩土应力比、桩顶荷载分担系数及土工加筋横向拉应力均在路肩区域达到极大值,且在路面范围内均大于大面积堆载工况。Abstract: The finite element geometric modeling methods commonly used for the geosynthetic reinforced and pile-supported embankments include the single pile model (including axisymmetric model and single pile three-dimensional (3D) model), the plane strain model and the full 3D piled embankments model. These models have different characteristics and assumptions, however, few studies have been carried out to focus on the comparison. The geometric modeling analysis is carried out by using the nonlinear finite element software ABAQUS combined with the field testing results. The differences and causes of stress distribution and deformation between the models with hypothesis of large-area surcharge filling and the full 3D piled embankments model with slope are compared and analyzed. The results of numerical model calculation show that the full 3D piled embankments model can best fit the real performance, while both the single pile model and the large-area surcharged full 3D piled embankments model underestimate the settlement. Due to the horizontal displacement and uplift swelling caused by embankment slope, the settlement difference, average stress ratio between pile and soil, the load sharing coefficient of the pile and lateral tensile stress of the geogrid all reach the maximum values under the shoulder region of the embankment. Meanwhile, under the pavement area, all the four parameters of the full 3D model with slope are larger than those of the full 3D piled embankments model with large-area surcharge filling. The numerical simulation results given by this paper can provide a meaningful reference for the geometrical numerical modelling of composite foundation under embankments and the analysis of the three-dimensional slope effect of embankments.
-
表 1 数值模型所用本构模型及单元类型
Table 1. Constitutive models and element type applied in FEM modelling
模型分部 本构模型 单元类型 轴对称模型 3D模型 地下水位之下的地基土 修正剑桥模型 CAX4P C3D8P 路堤填土、碎石垫层、地表填土 摩尔库伦理想弹塑性模型 CAX4 C3D8 PCC桩 线弹性模型 CAX4 C3D8 土工加筋 线弹性模型 MAX1 M3D4 -
[1] 娄炎, 何宁, 娄斌. 高速公路深厚软基工后沉降控制成套技术[M]. 北京: 人民交通出版社, 2011: 91-104. LOU Yan, HE Ning, LOU Bin. Complete settlement control technology for deep soft foundation of expressway[M]. Beijing: China Communications Press, 2011: 91-104. (in Chinese) [2] 姜彦彬, 何宁, 林志强, 等. 路堤深厚软基管桩复合地基数值模拟[J]. 水利水运工程学报,2018(2):43-51. (JIANG Yanbin, HE Ning, LIN Zhiqiang, et al. Numerical simulation of pipe pile composite foundation of deep soft foundation under embankment[J]. Hydro-Science and Engineering, 2018(2): 43-51. (in Chinese) [3] ZHENG J J, CHEN B G, LU Y E, et al. The performance of an embankment on soft ground reinforced with geosynthetics and pile walls[J]. Geosynthetics International, 2009, 16(3): 173-182. doi: 10.1680/gein.2009.16.3.173 [4] JENCK O, DIAS D, KASTNER R. Three-dimensional numerical modeling of a piled embankment[J]. International Journal of Geomechanics, 2009, 9(3): 102-112. doi: 10.1061/(ASCE)1532-3641(2009)9:3(102) [5] YAPAGE N N S, LIYANAPATHIRANA D S. A parametric study of geosynthetic-reinforced column-supported embankments[J]. Geosynthetics International, 2014, 21(3): 213-232. doi: 10.1680/gein.14.00010 [6] ARIYARATHNE P, LIYANAPATHIRANA D S, LEO C J. Comparison of different two-dimensional idealizations for a geosynthetic-reinforced pile-supported embankment[J]. International Journal of Geomechanics, 2013, 13(6): 754-768. doi: 10.1061/(ASCE)GM.1943-5622.0000266 [7] ARIYARATHNE P, LIYANAPATHIRANA D S. Review of existing design methods for geosynthetic-reinforced pile-supported embankments[J]. Soils and Foundations, 2015, 55(1): 17-34. doi: 10.1016/j.sandf.2014.12.002 [8] JAMSAWANG P, VOOTTIPRUEX P, BOATHONG P, et al. Three-dimensional numerical investigation on lateral movement and factor of safety of slopes stabilized with deep cement mixing column rows[J]. Engineering Geology, 2015, 188: 159-167. doi: 10.1016/j.enggeo.2015.01.017 [9] ZHUANG Y, WANG K Y. Finite-element analysis on the effect of subsoil in reinforced piled embankments and comparison with theoretical method predictions[J]. International Journal of Geomechanics, 2016, 16(5): 04016011. doi: 10.1061/(ASCE)GM.1943-5622.0000628 [10] 陈仁朋, 徐正中, 陈云敏. 桩承式加筋路堤关键问题研究[J]. 中国公路学报,2007,20(2):7-12. (CHEN Renpeng, XU Zhengzhong, CHEN Yunmin. Research on key problems of pile-supported reinforced embankment[J]. China Journal of Highway and Transport, 2007, 20(2): 7-12. (in Chinese) doi: 10.3321/j.issn:1001-7372.2007.02.002 [11] ZHUANG Y, ELLIS E, YU H S. Three-dimensional finite-element analysis of arching in a piled embankment[J]. Géotechnique, 2012, 62(12): 1127-1131. doi: 10.1680/geot.9.P.113 [12] ZHANG J, ZHENG J J, CHEN B G, et al. Coupled mechanical and hydraulic modeling of a geosynthetic-reinforced and pile-supported embankment[J]. Computers and Geotechnics, 2013, 52: 28-37. doi: 10.1016/j.compgeo.2013.03.003 [13] GIROUT R, BLANC M, DIAS D, et al. Numerical analysis of a geosynthetic-reinforced piled load transfer platform-validation on centrifuge test[J]. Geotextiles and Geomembranes, 2014, 42(5): 525-539. doi: 10.1016/j.geotexmem.2014.07.012 [14] LIU H L, NG C W W, FEI K. Performance of a geogrid-reinforced and pile-supported highway embankment over soft clay: case study[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(12): 1483-1493. doi: 10.1061/(ASCE)1090-0241(2007)133:12(1483) [15] KHABBAZIAN M, KALIAKIN V N, MEEHAN C L. Column supported embankments with geosynthetic encased columns: validity of the unit cell concept[J]. Geotechnical and Geological Engineering, 2015, 33(3): 425-442. doi: 10.1007/s10706-014-9826-8 [16] LIU K W, ROWE R K. Numerical study of the effects of geosynthetic reinforcement viscosity on behaviour of embankments supported by deep-mixing-method columns[J]. Geotextiles and Geomembranes, 2015, 43(6): 567-578. doi: 10.1016/j.geotexmem.2015.04.020 [17] LIU K W, ROWE R K, SU Q, et al. Long-term reinforcement strains for column supported embankments with viscous reinforcement by FEM[J]. Geotextiles and Geomembranes, 2017, 45(4): 307-319. doi: 10.1016/j.geotexmem.2017.04.003 [18] BHASI A, RAJAGOPAL K. Geosynthetic-Reinforced piled embankments: comparison of numerical and analytical methods[J]. International Journal of Geomechanics, 2015, 15(5): 04014074. doi: 10.1061/(ASCE)GM.1943-5622.0000414 [19] BHASI A, RAJAGOPAL K. Numerical study of basal reinforced embankments supported on floating/end bearing piles considering pile-soil interaction[J]. Geotextiles and Geomembranes, 2015, 43(6): 524-536. doi: 10.1016/j.geotexmem.2015.05.003 -