留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

桩承式加筋路堤有限元几何建模方法及边坡效应研究

姜彦彬 何宁 许滨华 张中流 耿之周 石北啸

姜彦彬,何宁,许滨华,等. 桩承式加筋路堤有限元几何建模方法及边坡效应研究[J]. 水利水运工程学报,2020(1):84-91. doi:  10.12170/20181206001
引用本文: 姜彦彬,何宁,许滨华,等. 桩承式加筋路堤有限元几何建模方法及边坡效应研究[J]. 水利水运工程学报,2020(1):84-91. doi:  10.12170/20181206001
(JIANG Yanbin, HE Ning, XU Binhua, et al. Geometrical modelling with finite element method and slope effect of geosynthetic reinforced and pile-supported embankments[J]. Hydro-Science and Engineering, 2020(1): 84-91. (in Chinese)) doi:  10.12170/20181206001
Citation: (JIANG Yanbin, HE Ning, XU Binhua, et al. Geometrical modelling with finite element method and slope effect of geosynthetic reinforced and pile-supported embankments[J]. Hydro-Science and Engineering, 2020(1): 84-91. (in Chinese)) doi:  10.12170/20181206001

桩承式加筋路堤有限元几何建模方法及边坡效应研究

doi: 10.12170/20181206001
基金项目: 国家重点研发计划资助项目(2018YFC1508505,2017YFC0404801);国家自然科学基金面上项目(51579152,51679149);中央级公益性科研院所基本科研业务费专项基金项目(Y317008);国家留学基金资助项目(CSC No. 201808320413)
详细信息
    作者简介:

    姜彦彬(1989—),男,山东临沂人,博士研究生,主要从事地基处理方面的研究。E-mail:tumujyb@163.com

  • 中图分类号: TU472

Geometrical modelling with finite element method and slope effect of geosynthetic reinforced and pile-supported embankments

  • 摘要: 桩承式加筋路堤常用的有限元几何建模方法包括单桩模型(含轴对称模型和单桩3D模型)、平面应变模型和3D断面模型,这些模型各具特点且前提假设各不相同,但却缺乏对比研究。使用非线性有限元软件ABAQUS结合现场试验结果进行了几何建模,对比分析了基于大面积堆载假定的模型与带边坡3D断面模型应力分布及变形的差异与原因。计算表明:3D断面模型最能反映桩承式加筋路堤真实工况,而单桩模型及大面积3D断面模型均低估了沉降量。边坡效应引起的水平位移及坡外隆起使得桩土沉降差、平均桩土应力比、桩顶荷载分担系数及土工加筋横向拉应力均在路肩区域达到极大值,且在路面范围内均大于大面积堆载工况。
  • 图  1  轴对称模型

    Figure  1.  Schematic diagram of axisymmetric model

    图  2  正方形布桩单桩3D模型

    Figure  2.  Three-dimensional model for single pile with square distributed piles

    图  3  二维平面应变模型

    Figure  3.  Two-dimensional plane strain model

    图  4  3D断面模型

    Figure  4.  Full 3D piled embankments model

    图  5  大面积堆载3D断面模型

    Figure  5.  Large area surcharged full 3D piled embankments model

    图  6  地表桩、土沉降对比

    Figure  6.  Settlement comparison of soil and pile on subsurface level

    图  7  路中测点位置桩、土应力分担

    Figure  7.  Vertical stress distribution of soil and pile at measuring point near center line of embankment

    图  8  路中位置桩、土平均应力分担

    Figure  8.  Average vertical stress distribution of soil and pile at central location of embankment

    图  9  路堤堆载结束时刻3D断面模型位移矢量图和水平位移云图

    Figure  9.  Displacement vector diagram and horizontal displacement contour of full 3D piled embankments model after surcharge filling

    图  10  路堤堆载结束时路堤和地基土大主应力云图(单位:kPa)

    Figure  10.  Principal stress contour of soils and fills after surcharge filling (unit: kPa)

    图  11  路堤堆载结束时各桩位处沉降及荷载

    Figure  11.  Settlement and load distribution between each pile and its surrounding soil after surcharge filling

    图  12  路堤堆载结束时土工加筋横向拉应力云图(单位:kPa)

    Figure  12.  Lateral tensile stress contour of geogrid after surcharge filling (unit: kPa)

    表  1  数值模型所用本构模型及单元类型

    Table  1.   Constitutive models and element type applied in FEM modelling

    模型分部 本构模型 单元类型
    轴对称模型 3D模型
    地下水位之下的地基土 修正剑桥模型 CAX4P C3D8P
    路堤填土、碎石垫层、地表填土 摩尔库伦理想弹塑性模型 CAX4 C3D8
    PCC桩 线弹性模型 CAX4 C3D8
    土工加筋 线弹性模型 MAX1 M3D4
    下载: 导出CSV
  • [1] 娄炎, 何宁, 娄斌. 高速公路深厚软基工后沉降控制成套技术[M]. 北京: 人民交通出版社, 2011: 91-104.

    LOU Yan, HE Ning, LOU Bin. Complete settlement control technology for deep soft foundation of expressway[M]. Beijing: China Communications Press, 2011: 91-104. (in Chinese)
    [2] 姜彦彬, 何宁, 林志强, 等. 路堤深厚软基管桩复合地基数值模拟[J]. 水利水运工程学报,2018(2):43-51. (JIANG Yanbin, HE Ning, LIN Zhiqiang, et al. Numerical simulation of pipe pile composite foundation of deep soft foundation under embankment[J]. Hydro-Science and Engineering, 2018(2): 43-51. (in Chinese)
    [3] ZHENG J J, CHEN B G, LU Y E, et al. The performance of an embankment on soft ground reinforced with geosynthetics and pile walls[J]. Geosynthetics International, 2009, 16(3): 173-182. doi:  10.1680/gein.2009.16.3.173
    [4] JENCK O, DIAS D, KASTNER R. Three-dimensional numerical modeling of a piled embankment[J]. International Journal of Geomechanics, 2009, 9(3): 102-112. doi:  10.1061/(ASCE)1532-3641(2009)9:3(102)
    [5] YAPAGE N N S, LIYANAPATHIRANA D S. A parametric study of geosynthetic-reinforced column-supported embankments[J]. Geosynthetics International, 2014, 21(3): 213-232. doi:  10.1680/gein.14.00010
    [6] ARIYARATHNE P, LIYANAPATHIRANA D S, LEO C J. Comparison of different two-dimensional idealizations for a geosynthetic-reinforced pile-supported embankment[J]. International Journal of Geomechanics, 2013, 13(6): 754-768. doi:  10.1061/(ASCE)GM.1943-5622.0000266
    [7] ARIYARATHNE P, LIYANAPATHIRANA D S. Review of existing design methods for geosynthetic-reinforced pile-supported embankments[J]. Soils and Foundations, 2015, 55(1): 17-34. doi:  10.1016/j.sandf.2014.12.002
    [8] JAMSAWANG P, VOOTTIPRUEX P, BOATHONG P, et al. Three-dimensional numerical investigation on lateral movement and factor of safety of slopes stabilized with deep cement mixing column rows[J]. Engineering Geology, 2015, 188: 159-167. doi:  10.1016/j.enggeo.2015.01.017
    [9] ZHUANG Y, WANG K Y. Finite-element analysis on the effect of subsoil in reinforced piled embankments and comparison with theoretical method predictions[J]. International Journal of Geomechanics, 2016, 16(5): 04016011. doi:  10.1061/(ASCE)GM.1943-5622.0000628
    [10] 陈仁朋, 徐正中, 陈云敏. 桩承式加筋路堤关键问题研究[J]. 中国公路学报,2007,20(2):7-12. (CHEN Renpeng, XU Zhengzhong, CHEN Yunmin. Research on key problems of pile-supported reinforced embankment[J]. China Journal of Highway and Transport, 2007, 20(2): 7-12. (in Chinese) doi:  10.3321/j.issn:1001-7372.2007.02.002
    [11] ZHUANG Y, ELLIS E, YU H S. Three-dimensional finite-element analysis of arching in a piled embankment[J]. Géotechnique, 2012, 62(12): 1127-1131. doi:  10.1680/geot.9.P.113
    [12] ZHANG J, ZHENG J J, CHEN B G, et al. Coupled mechanical and hydraulic modeling of a geosynthetic-reinforced and pile-supported embankment[J]. Computers and Geotechnics, 2013, 52: 28-37. doi:  10.1016/j.compgeo.2013.03.003
    [13] GIROUT R, BLANC M, DIAS D, et al. Numerical analysis of a geosynthetic-reinforced piled load transfer platform-validation on centrifuge test[J]. Geotextiles and Geomembranes, 2014, 42(5): 525-539. doi:  10.1016/j.geotexmem.2014.07.012
    [14] LIU H L, NG C W W, FEI K. Performance of a geogrid-reinforced and pile-supported highway embankment over soft clay: case study[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(12): 1483-1493. doi:  10.1061/(ASCE)1090-0241(2007)133:12(1483)
    [15] KHABBAZIAN M, KALIAKIN V N, MEEHAN C L. Column supported embankments with geosynthetic encased columns: validity of the unit cell concept[J]. Geotechnical and Geological Engineering, 2015, 33(3): 425-442. doi:  10.1007/s10706-014-9826-8
    [16] LIU K W, ROWE R K. Numerical study of the effects of geosynthetic reinforcement viscosity on behaviour of embankments supported by deep-mixing-method columns[J]. Geotextiles and Geomembranes, 2015, 43(6): 567-578. doi:  10.1016/j.geotexmem.2015.04.020
    [17] LIU K W, ROWE R K, SU Q, et al. Long-term reinforcement strains for column supported embankments with viscous reinforcement by FEM[J]. Geotextiles and Geomembranes, 2017, 45(4): 307-319. doi:  10.1016/j.geotexmem.2017.04.003
    [18] BHASI A, RAJAGOPAL K. Geosynthetic-Reinforced piled embankments: comparison of numerical and analytical methods[J]. International Journal of Geomechanics, 2015, 15(5): 04014074. doi:  10.1061/(ASCE)GM.1943-5622.0000414
    [19] BHASI A, RAJAGOPAL K. Numerical study of basal reinforced embankments supported on floating/end bearing piles considering pile-soil interaction[J]. Geotextiles and Geomembranes, 2015, 43(6): 524-536. doi:  10.1016/j.geotexmem.2015.05.003
  • [1] 王浩然, 王永志, 王海, 汤兆光, 王体强.  砂雨模型制备PFC3D的数值模拟 . 水利水运工程学报, 2021, (4): 68-74. doi: 10.12170/20200909002
    [2] 闫长斌, 张彦昌, 陈艳国, 徐晓.  考虑爆破累积损伤效应的含泥化夹层边坡滑移分析 . 水利水运工程学报, 2021, (1): 104-113. doi: 10.12170/20200127001
    [3] 雷文凯, 董宏源, 陈攀, 吕海波, 梅国雄.  考虑倾角的土质边坡Green-Ampt改进入渗模型 . 水利水运工程学报, 2020, (6): 101-107. doi: 10.12170/20191027002
    [4] 顾伟杰, 范明桥, 吉恩跃, 钱彬, 张兴刚.  粉质黏土原位地震动参数测试及模型参数反演分析 . 水利水运工程学报, 2020, (5): 103-108. doi: 10.12170/20190925001
    [5] 杨剑, 黎冰, 鲍安琪, 马文昊.  考虑土性参数空间变异性的单桩竖向承载力分析 . 水利水运工程学报, 2019, (5): 85-90. doi: 10.16198/j.cnki.1009-640X.2019.05.011
    [6] 高树飞, 冯云芬, 贡金鑫.  基于等效单自由度模型的高桩码头地震位移需求分析 . 水利水运工程学报, 2018, (5): 30-40. doi: 10.16198/j.cnki.1009-640X.2018.05.005
    [7] 林骁骋, 姚文娟.  边载和水平荷载作用下超长桩承载性状数值分析 . 水利水运工程学报, 2016, (1): 107-115.
    [8] 李炜, 黄旭, 赵生校, 周永, 王淡善.  海上风机基础大直径加翼单桩常重力模型试验数值仿真 . 水利水运工程学报, 2013, (4): 6-11.
    [9] 秦鹏,秦植海.  岩质高边坡监测数据的改进变维分形预测模型 . 水利水运工程学报, 2010, (1): -.
    [10] 姜海波,侍克斌,李玉建.  库盘大面积土工膜防渗体的渗漏估算 . 水利水运工程学报, 2010, (4): -.
    [11] 李士林,徐光明.  单锚板桩结构码头离心模型试验研究 . 水利水运工程学报, 2008, (1): 67-72.
    [12] 徐卓,陆培东,王艳红,徐敏.  "水道-沙洲"3D可视化模型的构建及应用——以小庙洪—三沙洪水道为例 . 水利水运工程学报, 2008, (2): -.
    [13] 文畅平.  黄土边坡稳定性的属性识别模型 . 水利水运工程学报, 2007, (2): 10-16.
    [14] 肖浩波,郑东健.  基于实测资料的边坡稳定性评价突变模型 . 水利水运工程学报, 2005, (2): 67-69.
    [15] 王国利,陈生水,徐光明.  干湿循环下膨胀土边坡稳定性的离心模型试验 . 水利水运工程学报, 2005, (4): 6-10.
    [16] 唐洪祥,邵龙潭,宋春红.  正弦波作用下模型坝的有限元边坡稳定分析 . 水利水运工程学报, 2002, (4): 20-23.
    [17] 曾友金,章为民.  超长单桩的荷载传递分析 . 水利水运工程学报, 2002, (1): 25-30.
    [18] 章为民,蔡正银,赖忠中.  加筋挡土墙的极限分析方法及离心模型试验验证 . 水利水运工程学报, 1995, (1): -.
    [19] 费勤发.  分层总和法在单桩分析中的应用 . 水利水运工程学报, 1989, (4): -.
    [20] 孟广训,沈定贤.  模型碎石桩应力的测定及其分析 . 水利水运工程学报, 1987, (2): -.
  • 加载中
图(12) / 表 (1)
计量
  • 文章访问数:  521
  • HTML全文浏览量:  336
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-06
  • 刊出日期:  2020-02-01

/

返回文章
返回