Hydrodynamic changes in south channel of Yangtze River estuary under topographic variation conditions
-
摘要: 1958—2010年,长江口南港河段河槽断面形态呈“U”型和“W”型交替变化。基于二维潮流数学模型,模拟了1958,1973,1997和2010年长江口地形条件下的水动力变化,进而分析了地形变化对潮波传递和潮流运动的影响。研究表明,南港河段水动力与地形变化密切相关。自1958年以来,南港河段潮差逐渐减小,潮波变形逐渐加剧;潮流与瑞丰沙发展变化联系紧密;1997年,瑞丰沙范围最大时,南港流速平面上呈复式分布,长兴水道为涨潮占优,其他年份,落潮占优,南港主槽始终为落潮占优;南港落潮分流比自1958至1973年明显降低,1973年后趋于稳定,为50%左右,随地形变化较小。Abstract: The river channel section of the south channel of the Yangtze River estuary changed alternately in “U” and “W” shapes from 1958 to 2010. Based on the two-dimensional tidal current mathematical model, the hydrodynamic changes under the topographic conditions of the Yangtze River estuary in 1958, 1973, 1997 and 2010 are respectively simulated, and the impacts of topographic changes on the tidal wave transmission and tidal current movement are analyzed. The research results show that the hydrodynamics in the study area (south channel) is closely related to the topographic variation. The tidal range of the south channel reach has gradually decreased, and the tidal wave deformation has gradually intensified since 1958. The tidal current movement is closely related to the development of the Ruifeng shoal. In 1997 when Ruifeng shoal was the largest, the flow velocity of the south channel was distributed in a double pattern. The Changxing waterway was dominated by the high tide, while the other years were dominated by the ebb tide, and the main channel of the south channel was always dominated by the ebb tide. From 1958 to 1973, the diversion ratio of the ebb tide in the south channel decreased significantly, and stablilized after 1973 to about 50%, with little change with the topography.
-
Key words:
- Yangtze River estuary /
- south channel /
- riverbed evolution /
- tide current
-
表 1 南港不同年份潮差统计
Table 1. Tidal range statistics of different years in south channel
m 年份 1# 2# 3# 4# 5# 6# 1958 3.68 3.67 3.70 3.79 3.81 3.84 1973 3.64 3.61 3.64 3.64 3.69 3.68 1997 3.50 3.49 3.47 3.52 3.50 3.59 2010 3.38 3.37 3.41 3.40 3.46 3.46 表 2 长兴水道(3#)和南港主槽(7#)流速统计
Table 2. Velocity statistics in Changxing passage and main south channel
年份 水深/m 涨急流速/(m·s−1) 落急流速/(m·s−1) 涨落急比值 优势流/% 3# 7# 3# 7# 3# 7# 3# 7# 3# 7# 1958 7.17 15.00 −1.39 −1.89 1.13 1.82 1.23 1.04 53.62 62.01 1973 10.77 9.40 −1.36 −1.64 1.23 1.62 1.11 1.01 59.99 64.00 1997 11.97 12.64 −1.29 −1.69 0.92 1.70 1.40 0.99 49.32 63.56 2010 12.07 12.73 −1.32 −1.33 1.06 1.50 1.25 0.89 56.34 67.54 -
[1] 陈吉余, 沈焕庭, 恽才兴, 等. 长江河口动力过程和地貌演变[M]. 上海: 上海科学技术出版社, 1988. CHEN Jiyu, SHEN Huanting, YUN Caixing, et al. Dynamic process and morphological evolution in the Changjiang Estuary[M]. Shanghai: Shanghai Scientific and Technical Publishers, 1988. (in Chinese) [2] 巩彩兰, 恽才兴, 虞志英. 长江口南港底沙输移及其对南、北槽分汊口的影响[J]. 海洋工程,2003,21(3):62-67. (GONG Cailan, YUN Caixing, YU Zhiying. Bed-load movement in the south channel and its effect on the south and north passages in the Yangtze Estuary[J]. The Ocean Engineering, 2003, 21(3): 62-67. (in Chinese) doi: 10.3969/j.issn.1005-9865.2003.03.010 [3] 朱玉荣. 冰后期最大海侵以来长江口潮波特性的变化[J]. 海洋科学,2000,24(5):34-36. (ZHU Yurong. The change of characteristics of tidal wave in the Changjiang River mouth area since the post-glacial transgression maximum[J]. Marine Sciences, 2000, 24(5): 34-36. (in Chinese) doi: 10.3969/j.issn.1000-3096.2000.05.012 [4] 薛鸿超. 长江口南、北港分汊口演变与治理[J]. 海洋工程,2006,24(1):27-33. (XUE Hongchao. Process and regulation of bifurcation of Southern and Northern Waterway in Yangtze River estuary[J]. The Ocean Engineering, 2006, 24(1): 27-33. (in Chinese) doi: 10.3969/j.issn.1005-9865.2006.01.005 [5] 阮伟, 曹慧江, 龚鸿锋. 长江口南北港分汊口河势控制工程及实施效果研究[J]. 海洋工程,2011,29(3):76-81. (RUAN Wei, CAO Huijiang, GONG Hongfeng. The study of the north-south channel bifurcation control system and its effect[J]. The Ocean Engineering, 2011, 29(3): 76-81. (in Chinese) doi: 10.3969/j.issn.1005-9865.2011.03.010 [6] 路川藤, 陈志昌, 罗小峰. 长江口北槽潮波传播变化特征研究[J]. 长江科学院院报,2015,32(8):9-14. (LU Chuanteng, CHEN Zhichang, LUO Xiaofeng. Variation characteristics of tidal wave propagation in the north channel of Yangtze Estuary[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(8): 9-14. (in Chinese) [7] 钱明霞, 路川藤, 罗小峰, 等. 长江口北槽潮波对地形变化的响应研究[J]. 水利水运工程学报,2016(5):54-60. (QIAN Mingxia, LU Chuanteng, LUO Xiaofeng, et al. Response of tide waves in north channel of Yangtze estuary to topographic variation[J]. Hydro-Science and Engineering, 2016(5): 54-60. (in Chinese) [8] 曹帅. 横沙东滩圈围工程对周边水环境影响的数值模拟研究[D]. 大连: 大连理工大学, 2015. CAO Shuai. Numerical simulation on the influence of reclamation project on nearby water environment in Eastern Hengsha Shoal[D]. Dalian: Dalian University of Technology, 2015. (in Chinese) [9] JIANG C J, LI J F, DE SWART H E. Effects of navigational works on morphological changes in the bar area of the Yangtze Estuary[J]. Geomorphology, 2012, 139-140: 205-219. doi: 10.1016/j.geomorph.2011.10.020 [10] JIANG C J, DE SWART H E, LI J F, et al. Mechanisms of along-channel sediment transport in the North Passage of the Yangtze Estuary and their response to large-scale interventions[J]. Ocean Dynamics, 2013, 63(2-3): 283-305. doi: 10.1007/s10236-013-0594-4 [11] 朱磊. 河势变化下河口环流结构及变异研究[D]. 上海: 华东师范大学, 2018. ZHU Lei. Alteration of estuarine circulation under the influence of morphological evolution[D]. Shanghai: East China Normal University, 2018. (in Chinese) [12] 道付海, 栾华龙, 杨万伦, 等. 长江河口南北槽分流口工程及瑞丰沙地形变化对分流比的影响[J]. 华东师范大学学报(自然科学版),2018(3):170-183. (DAO Fuhai, LUAN Hualong, YANG Wanlun, et al. Influence of the diversion project and bathymetric change of Ruifeng Shoal on the flow diversion ratios in the south and north passage of Yangtze River estuary[J]. Journal of East China Normal University (Natural Science), 2018(3): 170-183. (in Chinese) [13] 罗小峰, 王登婷. 河口海岸数值模拟可视化编程[M]. 北京: 海洋出版社, 2012. LUO Xiaofeng, WANG Dengting. Numerical simulation of estuarine and coastal programming[M]. Beijing: China Ocean Press, 2012. (in Chinese) [14] 路川藤, 罗小峰. 基于非结构网格的高分辨率隐式算法研究及应用[J]. 海洋通报,2015,34(1):59-64. (LU Chuanteng, LUO Xiaofeng. Study of the unstructured grid implicit algorithm and its application[J]. Marine Science Bulletin, 2015, 34(1): 59-64. (in Chinese) doi: 10.11840/j.issn.1001-6392.2015.01.008 -