Analysis of collapsing gully erosion mechanism in southeast Hubei under rainfall conditions based on ABAQUS software
-
摘要: 以研究崩壁在地下水抬升与不同类型降雨联合作用下的失稳模式与渗流场特性为目标,基于野外勘查和相关物理分析获取的鄂东南崩岗区典型风化岩土体剖面各层次基本指标数据,尝试从崩壁渗流场与应力场两场耦合的角度,运用数值试验探讨单次降雨诱发下水力因素影响崩岗侵蚀的过程与机理。结果发现:长期小雨环境下,崩壁破坏方式属于崩壁中下部土层局部被淘空与砂土层上覆土体整体滑移相结合;短时强雨环境下则表现为坡面浅层(分层)流滑破坏。但无论何种降雨类型都存在一个促使崩壁砂土层被水蚀并退去后形成凹腔(龛)的降雨前期阶段,直到龛深达到一极限值,龛体积不再扩大,转为历时较短的崩壁失稳前的降雨后期阶段。强降雨入渗产生的渗流区域主要分布在崩壁浅层地表,引起浅层土体持续软化,剪应力明显增大。伴随降雨历时的延长,坡面浅土层出现暂态饱和区且湿润峰(零压面)逐渐向崩壁深处推移,地下水位线逐渐抬升并以出露泉方式对砂土层下部造成机械潜蚀。分析结果与野外观测现象较为一致。
-
关键词:
- 崩岗崩壁 /
- 降雨入渗 /
- 失稳模式 /
- ABAQUS耦合分析 /
- 渗流场
Abstract: Aiming at investigating the instability mode and dynamic response of the seepage field of the collapse wall under the combined interaction of groundwater uplift and different types of rainfall duration, on the basis of mechanical index parameters of rock and soil layers of the collapsing hill obtained from in-situ observation and relevant geotechnical physical model tests, we attempt to explore the process and mechanism of hydraulic factors affecting the collapsing gully erosion under a single rainfall from the angle of coupling seepage domain and stress field of collapse wall through performing plenty of numerical experiments. The FEM analysis results indicate that the failure mode of the collapse wall in successive light rain environment belongs to the combination of local erosion of the middle and lower soil layers of collapse wall and integral-sliding failure of the soil body above the sandy soil layer, and in short-term heavy rain environment, the failure mode of the collapse wall is manifested by the (layered) flow sliding of the shallow slope surface. Whereas, no matter what type of rainfall, there must be an earlier stage (lasting for a long time) of precipitation that causes the sandy soil layer of the collapse wall to be eroded by water to form a concave cavity. Until the depth of the concave cavity reaches an ultimate value, the volume of concave cavity will no longer expand, and it will turn into a later stage of precipitation before the collapse wall is in critical failure status. The seepage areas generated by rainfall infiltration mainly occur in the shallow soil layers of the collapse wall, as a result, the shear strength properties of the shallow soil unceasingly weaken and the maximum shear stress increases obviously. With the prolongation of rainfall duration, a transient saturated zone appears in the surface soil layer of the catchment slope and the wetting peak (zero pressure surface) gradually moves towards the deep strata of the collapsing gully wall. The groundwater level line gradually rises and thus causes pipe erosion to the bottom of the sandy soil layer by (downward) outcropping springs. The analysis results are in good agreement with the field observation phenomena. -
表 1 崩壁各岩土层初始物理力学参数
Table 1. Basic physico-mechanical parameters of soil masses of collapse wall
土层编号 土壤质地 Hs/m Kws/ $\left( {{\rm{mm\cdot h}}^{ - 1}} \right)$ cs/kPa n/% ${\omega _*}$ /%$\gamma /$ $\left( {{\rm{kN\cdot}}{{\rm{m}}^{ - 3}}} \right)$ es ${\;\rho _{\rm{d}}}/$ $\left( {{\rm{g\cdot c}}{{\rm{m}}^{ - 3}}} \right)$ ds/ $\left( {{\rm{g\cdot c}}{{\rm{m}}^{ - 3}}} \right)$ Es/MPa $\nu $ $\varphi /{\rm{^\circ }} $ ①表土层 黏壤土 7.0 54.600 18.62 47.7 23.95 16.113 0.912 1.30 2.486 9.3 0.34 25.7 ②红土层1 黏壤土 3.4 13.371 35.36 46.0 22.10 17.216 0.852 1.41 2.611 18.5 0.35 27.1 ③红土层2 砂质
黏壤土2.3 9.306 73.19 45.5 20.42 16.738 0.835 1.39 2.550 20.8 0.31 29.9 ④砂土层 砂质壤土 0 11.665 14.05 48.1 21.25 16.248 0.927 1.34 2.582 21.2 0.30 29.3 ⑤碎屑层 壤质砂土 - 24.353 40.10 49.0 24.98 18.000 0.961 1.44 2.824 55.5 0.28 36.0 注:Hs为土层底面高程;Kws为饱和渗透系数;cs为有效黏聚力;ds为土颗粒相对密度; ${\omega _*}$ 为天然含水率;$\gamma $ 为天然重度;$n$ 为孔隙率;es为孔隙比;${\rho_{\rm d}}$ 为干密度;Es为杨氏模量;$\nu $ 为泊松比;$ \varphi$ 为有效内摩擦角。 -
[1] 刘希林. 全球视野下崩岗侵蚀地貌及其研究进展[J]. 地理科学进展,2018,37(3):342-351. (LIU Xilin. Benggang erosion landform and research progress in a global perspective[J]. Progress in Geography, 2018, 37(3): 342-351. (in Chinese) [2] 刘瑞华. 华南地区崩岗侵蚀灾害及其防治[J]. 水文地质工程地质,2004,31(4):54-57. (LIU Ruihua. Slope disintegration and its control in South China[J]. Hydrogeology & Engineering Geology, 2004, 31(4): 54-57. (in Chinese) doi: 10.3969/j.issn.1000-3665.2004.04.009 [3] 林敬兰, 黄炎和. 崩岗侵蚀的成因机理研究与问题[J]. 水土保持研究,2010,17(2):41-44. (LIN Jinglan, HUANG Yanhe. Review of study on formation mechanism of slope disintegration erosion and its problems[J]. Research of Soil and Water Conservation, 2010, 17(2): 41-44. (in Chinese) [4] 任兵芳, 丁树文, 吴大国, 等. 鄂东南崩岗崩壁溯源侵蚀特征研究[J]. 人民长江,2015,46(7):76-79. (REN Bingfang, DING Shuwen, WU Daguo, et al. Study of headward erosion characteristics of collapsed downland in granite region in southeast Hubei Province[J]. Yangtze River, 2015, 46(7): 76-79. (in Chinese) [5] 丁树文, 蔡崇法, 张光远. 鄂东南花岗地区重力侵蚀及崩岗形成规律的研究[J]. 南昌水专学报,1995(增刊1):50-54. (DING Shuwen, CAI Chongfa, ZHANG Guangyuan. A study on gravitational crosion and the formation of collapse mound in the granite area of Southeast Hubei[J]. Journal of Nanchang Institute of Technology, 1995(Suppl1): 50-54. (in Chinese) [6] 王秋霞, 丁树文, 邓羽松, 等. 花岗岩崩岗区不同土层的侵蚀水动力学特征[J]. 土壤学报,2017,54(3):570-580. (WANG Qiuxia, DING Shuwen, DENG Yusong, et al. Hydrodynamic characteristics of erosion in different soil layers in granite collapse region[J]. Acta Pedologica Sinica, 2017, 54(3): 570-580. (in Chinese) [7] 卢冬, 胡耀国, 彭四清, 等. 应用浅层地温测量法分析崩岗侵蚀与地下水分布关系[J]. 生态环境学报,2011,20(2):208-216. (LU Dong, HU Yaoguo, PENG Siqing, et al. Application of shallow earth temperature survey in investigating the relationships of spatial distribution between the typical weathering slope collapse and groundwater[J]. Ecology and Environmental Sciences, 2011, 20(2): 208-216. (in Chinese) doi: 10.3969/j.issn.1674-5906.2011.02.002 [8] 林敬兰, 黄炎和, 蒋芳市, 等. 崩岗土体的渗透性能机理研究[J]. 水土保持学报,2013,27(2):53-56, 144. (LIN Jinglan, HUANG Yanhe, JIANG Fangshi, et al. Study on the mechanism of different soil layer's permeability in Benggang[J]. Journal of Soil and Water Conservation, 2013, 27(2): 53-56, 144. (in Chinese) [9] 张大林, 刘希林. 崩岗堆积土体渗透特性及剖面水分特征——以广东省五华县莲塘岗崩岗为例[J]. 水土保持通报,2015,35(2):251-256, 262. (ZHANG Dalin, LIU Xilin. Permeability and sectional moisture characteristics of deposits in collapse hill-An example of Liantanggang collapse hill in Wuhua County of Guangdong Province[J]. Bulletin of Soil and Water Conservation, 2015, 35(2): 251-256, 262. (in Chinese) [10] 张燕, 黄炎和, 林金石, 等. 崩岗不同土层渗透差异及其影响因素研究[J]. 水土保持研究,2014,21(3):37-40, 46. (ZHANG Yan, HUANG Yanhe, LIN Jinshi, et al. Study on permeability discrepance and influence factors of different soil layers in collapsing hill[J]. Research of Soil and Water Conservation, 2014, 21(3): 37-40, 46. (in Chinese) [11] 熊传祥, 王涛, 鲁晓兵. 降雨作用下崩岗形成细观机理模拟[J]. 山地学报,2013,31(6):710-715. (XIONG Chuanxiang, WANG Tao, LU Xiaobing. Meso-mechanical simulation of slope disintegration erosion under rainfall[J]. Journal of Mountain Science, 2013, 31(6): 710-715. (in Chinese) doi: 10.3969/j.issn.1008-2786.2013.06.009 [12] 刘欢. 不同降雨条件对崩岗侵蚀影响与治理方法的模型试验——以福建省安溪县官桥镇为例[D]. 北京: 中国地质大学(北京), 2018: 20. LIU Huan. Different rainfall conditions on collapsing erosion effects and model tests on the control method-Take Anxi County town in Fujian Province as an example[D]. Beijing: China University of Geosciences (Beijing), 2018: 20. (in Chinese) [13] 王述红, 何坚, 杨天娇. 考虑降雨入渗的边坡稳定性数值分析[J]. 东北大学学报(自然科学版),2018,39(8):1196-1200. (WANG Shuhong, HE Jian, YANG Tianjiao. Numerical analysis on stability of slope considering rainfall infiltration[J]. Journal of Northeastern University (Natural Science), 2018, 39(8): 1196-1200. (in Chinese) [14] FREDLUND D G, RAHARDJO H. Soil mechanics for unsaturated soils[M]. New York: Wiley, 1993: 286-321. [15] 王维勇. 鄂东南花岗岩崩岗区土壤水分特征研究[D]. 武汉: 华中农业大学, 2012. WANG Weiyong. Study on soil moisture characteristics of granite collapsing hill in southeast of Hubei[D]. Wuhan: Huazhong Agricultural University, 2012. (in Chinese) [16] 张晓岸. 抗滑桩边坡降雨入渗分析[D]. 湘潭: 湘潭大学, 2014: 26. ZHANG Xiaoan. The slope supported by anti-slide piles of rainfall infiltration analysis[D]. Xiangtan: Xiangtan University, 2014: 26. (in Chinese) [17] 费康, 张建伟. ABAQUS在岩土工程中的应用[M]. 北京: 中国水利水电出版社, 2010. FEI Kang, ZHANG Jianwei. Application of ABAQUS in geotechnical engineering[M]. Beijing: China Water and Power Press, 2010. (in Chinese) [18] 《工程地质手册》编委会. 工程地质手册[M]. 4版. 北京: 中国建筑工业出版社, 2007: 842-843. Editorial Board of Manual of Engineering Geology. Manual of engineering geology[M]. 4th ed. Beijing: China Architecture and Building Press, 2007: 842-843. (in Chinese) [19] 刘希林, 连海清. 崩岗侵蚀地貌分布的海拔高程与坡向选择性[J]. 水土保持通报,2011,31(4):32-36, 41. (LIU Xilin, LIAN Haiqing. Distribution choices of elevation and slope orientation of collapsing hills[J]. Bulletin of Soil and Water Conservation, 2011, 31(4): 32-36, 41. (in Chinese) [20] 陈洪凯, 赵先涛, 唐红梅, 等. 基于浪蚀龛和土体临界高度的修正的卡丘金法及其工程应用[J]. 岩土力学,2014,35(4):1095-1100, 1109. (CHEN Hongkai, ZHAO Xiantao, TANG Hongmei, et al. Modified Kachugin method based on wave cut notch and critical height of soil and its engineering application[J]. Rock and Soil Mechanics, 2014, 35(4): 1095-1100, 1109. (in Chinese) -