Preliminary study on evolutions of Yangtze River and Dongting Lake water and sediment fluxes exchanges based on MLP method
-
摘要: 基于多层感知机MLP(Multi-layers Perceptrons)方法建立了长江和洞庭湖水沙交换关键节点间的回归关系,计算并分析江湖水沙交换各节点的联动变化。研究结果如下:(1)城汉河段(城陵矶-汉口)的河床冲淤及水情变化是江湖水沙通量演变的重要环节,分析下荆江裁弯后三口和干流水沙通量的变化可知,城汉河段淤积严重导致荆江水沙下泄受阻;(2)三峡水库运用后,荆江河段上下游间、主支汊间的水沙联系减弱明显;(3)当汉口水位高于26 m时,汉口水位每抬升1 m对应的螺山流量增量基本稳定,该值在调弦口建闸前后、裁弯后、葛洲坝截流后和三峡水库运用后分别为4 400,4 300,4 500~4 700 和4 000 m3/s;(4)荆江三口水沙分泄能力对宜昌站来水量的响应程度逐渐减弱,在三峡水库运用前各时段内,三口水沙分泄能力对来水量的响应程度在汛期宜昌站流量站流量为35 000 m3/s时最强,三峡水库运用后,则是在汛前和汛后宜昌站流量为25 000 m3/s时最强。Abstract: This study establishes the regression relationship among key nodes of water and sediment exchange in the Yangtze River and Dongting Lake on the basis of MLP (Multi-layers Perceptrons) method and calculates and analyzes the linkage changes of nodes between the Yangtze River and Dongting Lake. This study draws the following conclusions: (1) Analysis of changes of water and sediment flux in the three outlets and the main stream after Jingjiang artificial cut off shows that the riverbed erosion and water regime change in the Chenghan River section is one of the most important links in the water and sediment flux evolution of the Yangtze River and Dongting Lake. The serious sedimentation of the Chenghan River section leads to the discharge of water and sediment in Jingjiang blocked. (2) After the application of the TGP (Three Gorges Project), the flow and sediment relations between the upper and lower reaches, the mainstream and tributaries of the Jingjiang are weakened in a relatively prominent degree. (3) When the water level of Hankou is higher than 26 m, the flow increase of Luoshan is basically stable when the water level of Hankou has a rise of 1 m. The stable value is 4,400 m3/s, 4,300 m3/s, 4,500~4,700 m3/s and 4,000 m3/s respectively before and after the sluice construction of Tiaoxian outlet, after the Jingjiang cut off, after the interception of Gezhouba and the operation of the TGP. (4) The response of water and sediment discharge capacities of the three outlets of Jingjiang to Yichang's inflow is weakened gradually. During time intervals before the application of TGP, the response of water and sediment discharge capacities of the three outlets to Yichang's inflow is the strongest when the water discharge of Yichang is 35,000 m3/s in the flood season. After TGP is applied, the response is the strongest when the water discharge of Yichang is 25,000 m3/s before and after the flood season.
-
表 1 不同时期宜昌至汉口河段年平滩河槽冲淤强度
Table 1. Intensity of sediment and scour in Yichang-Hankou reach at different stages
河段
名称河段
长度/km年平滩河槽冲淤强度/(104m3·(km·a)−1) 1966—1981年 1982—2002年 2003—2016年 宜枝 60.8 −6.9 −6.4 −18.3 上荆江 171.7 −5.6 −7.4 −23.3 下荆江 175.5 −7.7 3.3 −15.4 荆江 347.2 −6.6 −2.0 −19.3 城汉 251.0 3.0 1.4 −11.2 表 2 各时段江湖水沙交换关键节点回归关系判定系数
Table 2. Coefficients of determination for regression relationships of key nodes in water and sediment exchange in Yangtze River and Dongting Lake in each period
节点及关系 调弦口建闸前/后 下荆江裁弯完成后 葛洲坝截流后 三峡水库蓄水运用后 Z汉口-Q螺山 0.979/0.969 0.969 0.973 0.964 Q螺山-Z城陵矶 0.975/0.976 0.986 0.988 0.992 Z城陵矶-Z南咀 0.936/0.927 0.923 0.938 0.907 Z南咀-S 三口 0.867/0.859 0.807 0.733 0.684 S三口-S监利 0.900/0.857 0.921 0.923 0.816 S监利-S沙市 0.888/0.910 0.944 0.943 0.828 Q宜昌-S三口 0.951/0.974 0.972 0.841 0.833 Q宜昌-S监利 0.924/0.905 0.897 0.907 0.804 Q宜昌-S沙市 0.889/0.925 0.943 0.915 0.812 表 3 各研究时段ΔS沙市/ΔS三口变化(ΔQ宜昌=1 000 m3/s)
Table 3. Ratio of the sediment flux increase of Shashi to the three outlets
宜昌站流量/
(m3·s−1)ΔS沙市/ΔS三口 调弦口建闸前/后 下荆江裁弯后 葛洲坝截流后 三峡水库蓄水运用后 5 000 24.2/41.6 321.3 4 219.2 836.0 6 000 11.7/19.8 95.7 924.5 514.3 $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ 10 000 3.1/4.5 10.0 29.2 41.4 11 000 2.7/3.8 7.7 18.2 27.1 $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ 15 000 2.0/2.4 4.2 5.8 9.0 16 000 1.9/2.3 3.8 4.9 7.6 $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ 20 000 1.7/2.0 3.1 3.4 5.0 21 000 1.7/1.9 3.0 3.2 4.7 $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ 25 000 1.6/1.8 2.8 2.9 4.3 26 000 1.5/1.8 2.7 2.9 4.3 $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ 30 000 1.5/1.7 2.7 3.0 4.6 31 000 1.5/1..7 2.7 3.1 4.8 $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ 35 000 1.4/1.7 2.7 3.4 5.6 36 000 1.4/1.8 2.7 3.5 5.8 $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ 40 000 1.3/1.8 2.7 4.0 7.2 41 000 1.3/1.8 2.7 4.1 7.6 $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ 45 000 1.2/1.8 2.8 4.7 9.5 46 000 1.2/1.8 2.8 4.9 10.1 $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ 50 000 1.2/1.8 2.8 5.7 12.9 51 000 1.1/1.9 2.9 5.9 13.7 $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ 55 000 1.1/1.9 2.9 6.8 17.6 56 000 1.1/1.9 2.9 7.1 18.8 57 000 1.1/1.9 2.9 7.4 20.0 58 000 1.0/1.9 3.0 7.6 21.3 59 000 1.0/1.9 3.0 7.9 22.7 60 000 1.0/1.9 3.0 8.2 -
[1] 许全喜, 胡功宇, 袁晶. 近50年来荆江三口分流分沙变化研究[J]. 泥沙研究,2009(5):1-8. (XU Quanxi, HU Gongyu, YUAN Jing. Research on the flow and sediment diversion in the three outlets along Jingjiang River in recent 50 years[J]. Journal of Sediment Research, 2009(5): 1-8. (in Chinese) doi: 10.3321/j.issn:0468-155X.2009.05.001 [2] 卢金友. 荆江三口分流分沙变化规律研究[J]. 泥沙研究,1996(4):55-62. (LU Jinyou. Study on laws of runoff and sediment diverted from three outfalls on the Jingjiang reach of the Yangtze River[J]. Journal of Sediment Research, 1996(4): 55-62. (in Chinese) [3] 刘卡波, 丛振涛, 栾震宇. 长江向洞庭湖分水演变规律研究[J]. 水力发电学报,2011,30(5):16-19. (LIU Kabo, CONG Zhentao, LUAN Zhenyu. Runoff from Yangtze River into Dongting Lake through four inlets[J]. Journal of Hydroelectric Engineering, 2011, 30(5): 16-19. (in Chinese) [4] OU C M, LI J B, ZHOU Y Q, et al. Evolution characters of water exchange abilities between Dongting Lake and Yangtze River[J]. Journal of Geographical Sciences, 2014, 24(4): 731-745. doi: 10.1007/s11442-014-1116-0 [5] HU C H, FANG C M, CAO W H. Shrinking of Dongting Lake and its weakening connection with the Yangtze River: Analysis of the impact on flooding[J]. International Journal of Sediment Research, 2015, 30(3): 256-262. doi: 10.1016/j.ijsrc.2014.05.001 [6] 方春明, 毛继新, 陈绪坚. 三峡工程蓄水运用后荆江三口分流河道冲淤变化模拟[J]. 中国水利水电科学研究院学报,2007,5(3):181-185. (FANG Chunming, MAO Jixin, CHEN Xujian. Simulation of erosion and sedimentation at triple-branches of the Jingjiang River after operation of the Three Georges Project[J]. Journal of China Institute of Water Resources and Hydropower Research, 2007, 5(3): 181-185. (in Chinese) doi: 10.3969/j.issn.1672-3031.2007.03.004 [7] 宫平, 杨文俊. 三峡水库建成后对长江中下游江湖水沙关系变化趋势初探Ⅱ. 江湖关系及槽蓄影响初步研究[J]. 水力发电学报,2009,28(6):120-125. (GONG Ping, YANG Wenjun. Preliminary study of river-lake evolution effect due to Three Gorges progect. Part 2. The effect on riverlake relation and channel storage capacity[J]. Journal of Hydroelectric Engineering, 2009, 28(6): 120-125. (in Chinese) [8] 朱玲玲, 许全喜, 戴明龙. 荆江三口分流变化及三峡水库蓄水影响[J]. 水科学进展,2016,27(6):822-831. (ZHU Lingling, XU Quanxi, DAI Minglong. Runoff diverted from the Jingjiang reach to the Dongting Lake and the effect of Three Gorges Reservoir[J]. Advances in Water Science, 2016, 27(6): 822-831. (in Chinese) [9] 李义天, 郭小虎, 唐金武, 等. 三峡建库后荆江三口分流的变化[J]. 应用基础与工程科学学报,2009,17(1):21-31. (LI Yitian, GUO Xiaohu, TANG Jinwu, et al. Changes on runoff diversion from jingjiang reach of the Yangtze River to Dongting Lake after the operation of Three Gorges Reservoir[J]. Journal of Basic Science and Engineering, 2009, 17(1): 21-31. (in Chinese) doi: 10.3969/j.issn.1005-0930.2009.01.003 [10] 渠庚, 郭小虎, 朱勇辉, 等. 三峡工程运用后荆江与洞庭湖关系变化分析[J]. 水力发电学报,2012,31(5):163-172. (QU Geng, GUO Xiaohu, ZHU Yonghui, et al. Change in relationship of Jingjiang River and Dongting Lake after operation of Three Gorges Project[J]. Journal of Hydroelectric Engineering, 2012, 31(5): 163-172. (in Chinese) [11] 张欧阳, 熊明. 洞庭湖排沙比变化及影响因素分析[J]. 人民长江,2006,37(12):117-119. (ZHANG Ouyang, XIONG Ming. The change of sediment discharge ratio in Dongting lake and its influencing factors[J]. Yangtze River, 2006, 37(12): 117-119. (in Chinese) doi: 10.3969/j.issn.1001-4179.2006.12.040 [12] 丛振涛, 肖鹏, 章诞武, 等. 三峡工程运行前后城陵矶水位变化及其原因分析[J]. 水力发电学报,2014,33(3):23-28. (CONG Zhentao, XIAO Peng, ZHANG Danwu, et al. Water stage at Chenglingji before and after the Three Gorges project[J]. Journal of Hydroelectric Engineering, 2014, 33(3): 23-28. (in Chinese) [13] 郑颖. 洞庭湖出口中枯水位特征及变化趋势[J]. 湖南水利水电,2017(2):50-52. (ZHENG Ying. Characteristics and variation trend of dry water level in Dongting lake outlet[J]. Hunan Hydro & Power, 2017(2): 50-52. (in Chinese) doi: 10.3969/j.issn.1009-4229(s).2017.02.017 [14] 李振林, 唐从胜. 洞庭湖顶托对下荆江泄洪量的影响[J]. 水文,2000,20(6):27-28, 31. (LI Zhenlin, TANG Congsheng. Impact of withstanding flow by the Dongting Lake to flood discharge in the lower Jingjiang River section[J]. Hydrology, 2000, 20(6): 27-28, 31. (in Chinese) doi: 10.3969/j.issn.1000-0852.2000.06.008 [15] 王冬, 李义天, 邓金运, 等. 三峡水库蓄水期洞庭湖水力要素变化初步分析[J]. 水力发电学报,2014,33(2):26-32. (WANG Dong, LI Yitian, DENG Jinyun, et al. Preliminary analysis of changes in hydraulic elements of Dongting lake in storage period of Three Gorges reservoir[J]. Journal of Hydroelectric Engineering, 2014, 33(2): 26-32. (in Chinese) [16] 王冬. 水库运行后长江与通江湖泊关系演变及水沙输移规律研究[D]. 武汉: 武汉大学, 2014. WANG Dong. Research on change of Yangtze River-Dongting Lake relations and flow & sediment transport after operation of reservoir[D]. Wuhan: Wuhan University, 2014. (in Chinese) [17] 李义天, 李荣, 邓金运. 长江中游泥沙输移规律及对防洪影响研究[J]. 泥沙研究,2000(3):12-20. (LI Yitian, LI Rong, DENG Jinyun. A study on sediment transport and flood control in the middle reach of Yangtze River[J]. Journal of Sediment Research, 2000(3): 12-20. (in Chinese) doi: 10.3321/j.issn:0468-155X.2000.03.002 -