留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MLP方法的长江-洞庭湖江湖水沙交换演变规律研究

贾雅兰 施勇

贾雅兰,施勇. 基于MLP方法的长江-洞庭湖江湖水沙交换演变规律研究[J]. 水利水运工程学报,2020(5):24-32 doi:  10.12170/20190627001
引用本文: 贾雅兰,施勇. 基于MLP方法的长江-洞庭湖江湖水沙交换演变规律研究[J]. 水利水运工程学报,2020(5):24-32 doi:  10.12170/20190627001
(JIA Yalan, SHI Yong. Preliminary study on evolutions of Yangtze River and Dongting Lake water and sediment fluxes exchanges based on MLP method[J]. Hydro-Science and Engineering, 2020(5): 24-32. (in Chinese)) doi:  10.12170/20190627001
Citation: (JIA Yalan, SHI Yong. Preliminary study on evolutions of Yangtze River and Dongting Lake water and sediment fluxes exchanges based on MLP method[J]. Hydro-Science and Engineering, 2020(5): 24-32. (in Chinese)) doi:  10.12170/20190627001

基于MLP方法的长江-洞庭湖江湖水沙交换演变规律研究

doi: 10.12170/20190627001
基金项目: 国家重点研发计划资助项目(2017YFC0405301);中央级公益性科研院所基本科研业务费专项资金(Y520012)
详细信息
    作者简介:

    贾雅兰(1992—),女,云南文山人,硕士研究生,主要从事江湖水沙关系演变研究。E-mail: jiayalan@sina.com

  • 中图分类号: TV142

Preliminary study on evolutions of Yangtze River and Dongting Lake water and sediment fluxes exchanges based on MLP method

  • 摘要: 基于多层感知机MLP(Multi-layers Perceptrons)方法建立了长江和洞庭湖水沙交换关键节点间的回归关系,计算并分析江湖水沙交换各节点的联动变化。研究结果如下:(1)城汉河段(城陵矶-汉口)的河床冲淤及水情变化是江湖水沙通量演变的重要环节,分析下荆江裁弯后三口和干流水沙通量的变化可知,城汉河段淤积严重导致荆江水沙下泄受阻;(2)三峡水库运用后,荆江河段上下游间、主支汊间的水沙联系减弱明显;(3)当汉口水位高于26 m时,汉口水位每抬升1 m对应的螺山流量增量基本稳定,该值在调弦口建闸前后、裁弯后、葛洲坝截流后和三峡水库运用后分别为4 400,4 300,4 500~4 700 和4 000 m3/s;(4)荆江三口水沙分泄能力对宜昌站来水量的响应程度逐渐减弱,在三峡水库运用前各时段内,三口水沙分泄能力对来水量的响应程度在汛期宜昌站流量站流量为35 000 m3/s时最强,三峡水库运用后,则是在汛前和汛后宜昌站流量为25 000 m3/s时最强。
  • 图  1  荆江-洞庭湖河系示意

    Figure  1.  Jingjiang River and Dongting Lake system

    图  2  汉口水位与螺山站流量关系

    Figure  2.  Regression relationships between the water-level of Hankou and the flow of Luoshan

    图  3  螺山站流量与城陵矶水位、城陵矶水位与南咀水位的关系变化

    Figure  3.  Regression relationships between the flow of Luoshan and the water-level of Chenlingji and between the water-level of Chenlingji and Nanzui

    图  4  荆江三口、监利和沙市输沙率关系

    Figure  4.  Regression relationships among sediment fluxes of the three outlets, Jianli and Shashi

    图  5  各研究时段江湖水沙交换各关键节点处响应关系变化

    Figure  5.  Response relationships at key nodes of water and sediment exchange in Yangtze River and Dongting Lake

    图  6  荆江三口、监利及沙市输沙率对宜昌流量变化的响应

    Figure  6.  Response of sediment transport rates of the three outlets of Jingjiang, Jianli and Shashi stations to discharge variation in Yichang

    表  1  不同时期宜昌至汉口河段年平滩河槽冲淤强度

    Table  1.   Intensity of sediment and scour in Yichang-Hankou reach at different stages

    河段
    名称
    河段
    长度/km
    年平滩河槽冲淤强度/(104m3·(km·a)−1
    1966—1981年1982—2002年2003—2016年
    宜枝60.8−6.9−6.4−18.3
    上荆江171.7−5.6−7.4−23.3
    下荆江175.5−7.73.3−15.4
    荆江347.2−6.6−2.0−19.3
    城汉251.03.01.4−11.2
    下载: 导出CSV

    表  2  各时段江湖水沙交换关键节点回归关系判定系数

    Table  2.   Coefficients of determination for regression relationships of key nodes in water and sediment exchange in Yangtze River and Dongting Lake in each period

    节点及关系调弦口建闸前/后下荆江裁弯完成后葛洲坝截流后三峡水库蓄水运用后
    Z汉口-Q螺山 0.979/0.969 0.969 0.973 0.964
    Q螺山-Z城陵矶 0.975/0.976 0.986 0.988 0.992
    Z城陵矶-Z南咀 0.936/0.927 0.923 0.938 0.907
    Z南咀-S三口 0.867/0.859 0.807 0.733 0.684
    S三口-S监利 0.900/0.857 0.921 0.923 0.816
    S监利-S沙市 0.888/0.910 0.944 0.943 0.828
    Q宜昌-S三口 0.951/0.974 0.972 0.841 0.833
    Q宜昌-S监利 0.924/0.905 0.897 0.907 0.804
    Q宜昌-S沙市 0.889/0.925 0.943 0.915 0.812
    下载: 导出CSV

    表  3  各研究时段ΔS沙市S三口变化(ΔQ宜昌=1 000 m3/s)

    Table  3.   Ratio of the sediment flux increase of Shashi to the three outlets

    宜昌站流量/
    (m3·s−1)
    ΔS沙市S三口
    调弦口建闸前/后下荆江裁弯后葛洲坝截流后三峡水库蓄水运用后
    5 000 24.2/41.6 321.3 4 219.2 836.0
    6 000 11.7/19.8 95.7 924.5 514.3
    $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
    10 000 3.1/4.5 10.0 29.2 41.4
    11 000 2.7/3.8 7.7 18.2 27.1
    $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
    15 000 2.0/2.4 4.2 5.8 9.0
    16 000 1.9/2.3 3.8 4.9 7.6
    $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
    20 000 1.7/2.0 3.1 3.4 5.0
    21 000 1.7/1.9 3.0 3.2 4.7
    $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
    25 000 1.6/1.8 2.8 2.9 4.3
    26 000 1.5/1.8 2.7 2.9 4.3
    $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
    30 000 1.5/1.7 2.7 3.0 4.6
    31 000 1.5/1..7 2.7 3.1 4.8
    $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
    35 000 1.4/1.7 2.7 3.4 5.6
    36 000 1.4/1.8 2.7 3.5 5.8
    $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
    40 000 1.3/1.8 2.7 4.0 7.2
    41 000 1.3/1.8 2.7 4.1 7.6
    $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
    45 000 1.2/1.8 2.8 4.7 9.5
    46 000 1.2/1.8 2.8 4.9 10.1
    $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
    50 000 1.2/1.8 2.8 5.7 12.9
    51 000 1.1/1.9 2.9 5.9 13.7
    $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
    55 000 1.1/1.9 2.9 6.8 17.6
    56 000 1.1/1.9 2.9 7.1 18.8
    57 000 1.1/1.9 2.9 7.4 20.0
    58 000 1.0/1.9 3.0 7.6 21.3
    59 000 1.0/1.9 3.0 7.9 22.7
    60 000 1.0/1.9 3.0 8.2
    下载: 导出CSV
  • [1] 许全喜, 胡功宇, 袁晶. 近50年来荆江三口分流分沙变化研究[J]. 泥沙研究,2009(5):1-8. (XU Quanxi, HU Gongyu, YUAN Jing. Research on the flow and sediment diversion in the three outlets along Jingjiang River in recent 50 years[J]. Journal of Sediment Research, 2009(5): 1-8. (in Chinese) doi:  10.3321/j.issn:0468-155X.2009.05.001
    [2] 卢金友. 荆江三口分流分沙变化规律研究[J]. 泥沙研究,1996(4):55-62. (LU Jinyou. Study on laws of runoff and sediment diverted from three outfalls on the Jingjiang reach of the Yangtze River[J]. Journal of Sediment Research, 1996(4): 55-62. (in Chinese)
    [3] 刘卡波, 丛振涛, 栾震宇. 长江向洞庭湖分水演变规律研究[J]. 水力发电学报,2011,30(5):16-19. (LIU Kabo, CONG Zhentao, LUAN Zhenyu. Runoff from Yangtze River into Dongting Lake through four inlets[J]. Journal of Hydroelectric Engineering, 2011, 30(5): 16-19. (in Chinese)
    [4] OU C M, LI J B, ZHOU Y Q, et al. Evolution characters of water exchange abilities between Dongting Lake and Yangtze River[J]. Journal of Geographical Sciences, 2014, 24(4): 731-745. doi:  10.1007/s11442-014-1116-0
    [5] HU C H, FANG C M, CAO W H. Shrinking of Dongting Lake and its weakening connection with the Yangtze River: Analysis of the impact on flooding[J]. International Journal of Sediment Research, 2015, 30(3): 256-262. doi:  10.1016/j.ijsrc.2014.05.001
    [6] 方春明, 毛继新, 陈绪坚. 三峡工程蓄水运用后荆江三口分流河道冲淤变化模拟[J]. 中国水利水电科学研究院学报,2007,5(3):181-185. (FANG Chunming, MAO Jixin, CHEN Xujian. Simulation of erosion and sedimentation at triple-branches of the Jingjiang River after operation of the Three Georges Project[J]. Journal of China Institute of Water Resources and Hydropower Research, 2007, 5(3): 181-185. (in Chinese) doi:  10.3969/j.issn.1672-3031.2007.03.004
    [7] 宫平, 杨文俊. 三峡水库建成后对长江中下游江湖水沙关系变化趋势初探Ⅱ. 江湖关系及槽蓄影响初步研究[J]. 水力发电学报,2009,28(6):120-125. (GONG Ping, YANG Wenjun. Preliminary study of river-lake evolution effect due to Three Gorges progect. Part 2. The effect on riverlake relation and channel storage capacity[J]. Journal of Hydroelectric Engineering, 2009, 28(6): 120-125. (in Chinese)
    [8] 朱玲玲, 许全喜, 戴明龙. 荆江三口分流变化及三峡水库蓄水影响[J]. 水科学进展,2016,27(6):822-831. (ZHU Lingling, XU Quanxi, DAI Minglong. Runoff diverted from the Jingjiang reach to the Dongting Lake and the effect of Three Gorges Reservoir[J]. Advances in Water Science, 2016, 27(6): 822-831. (in Chinese)
    [9] 李义天, 郭小虎, 唐金武, 等. 三峡建库后荆江三口分流的变化[J]. 应用基础与工程科学学报,2009,17(1):21-31. (LI Yitian, GUO Xiaohu, TANG Jinwu, et al. Changes on runoff diversion from jingjiang reach of the Yangtze River to Dongting Lake after the operation of Three Gorges Reservoir[J]. Journal of Basic Science and Engineering, 2009, 17(1): 21-31. (in Chinese) doi:  10.3969/j.issn.1005-0930.2009.01.003
    [10] 渠庚, 郭小虎, 朱勇辉, 等. 三峡工程运用后荆江与洞庭湖关系变化分析[J]. 水力发电学报,2012,31(5):163-172. (QU Geng, GUO Xiaohu, ZHU Yonghui, et al. Change in relationship of Jingjiang River and Dongting Lake after operation of Three Gorges Project[J]. Journal of Hydroelectric Engineering, 2012, 31(5): 163-172. (in Chinese)
    [11] 张欧阳, 熊明. 洞庭湖排沙比变化及影响因素分析[J]. 人民长江,2006,37(12):117-119. (ZHANG Ouyang, XIONG Ming. The change of sediment discharge ratio in Dongting lake and its influencing factors[J]. Yangtze River, 2006, 37(12): 117-119. (in Chinese) doi:  10.3969/j.issn.1001-4179.2006.12.040
    [12] 丛振涛, 肖鹏, 章诞武, 等. 三峡工程运行前后城陵矶水位变化及其原因分析[J]. 水力发电学报,2014,33(3):23-28. (CONG Zhentao, XIAO Peng, ZHANG Danwu, et al. Water stage at Chenglingji before and after the Three Gorges project[J]. Journal of Hydroelectric Engineering, 2014, 33(3): 23-28. (in Chinese)
    [13] 郑颖. 洞庭湖出口中枯水位特征及变化趋势[J]. 湖南水利水电,2017(2):50-52. (ZHENG Ying. Characteristics and variation trend of dry water level in Dongting lake outlet[J]. Hunan Hydro & Power, 2017(2): 50-52. (in Chinese) doi:  10.3969/j.issn.1009-4229(s).2017.02.017
    [14] 李振林, 唐从胜. 洞庭湖顶托对下荆江泄洪量的影响[J]. 水文,2000,20(6):27-28, 31. (LI Zhenlin, TANG Congsheng. Impact of withstanding flow by the Dongting Lake to flood discharge in the lower Jingjiang River section[J]. Hydrology, 2000, 20(6): 27-28, 31. (in Chinese) doi:  10.3969/j.issn.1000-0852.2000.06.008
    [15] 王冬, 李义天, 邓金运, 等. 三峡水库蓄水期洞庭湖水力要素变化初步分析[J]. 水力发电学报,2014,33(2):26-32. (WANG Dong, LI Yitian, DENG Jinyun, et al. Preliminary analysis of changes in hydraulic elements of Dongting lake in storage period of Three Gorges reservoir[J]. Journal of Hydroelectric Engineering, 2014, 33(2): 26-32. (in Chinese)
    [16] 王冬. 水库运行后长江与通江湖泊关系演变及水沙输移规律研究[D]. 武汉: 武汉大学, 2014.

    WANG Dong. Research on change of Yangtze River-Dongting Lake relations and flow & sediment transport after operation of reservoir[D]. Wuhan: Wuhan University, 2014. (in Chinese)
    [17] 李义天, 李荣, 邓金运. 长江中游泥沙输移规律及对防洪影响研究[J]. 泥沙研究,2000(3):12-20. (LI Yitian, LI Rong, DENG Jinyun. A study on sediment transport and flood control in the middle reach of Yangtze River[J]. Journal of Sediment Research, 2000(3): 12-20. (in Chinese) doi:  10.3321/j.issn:0468-155X.2000.03.002
  • [1] 范红霞, 王建中, 朱立俊.  新水沙条件与整治工程下和畅洲汊道演变分析 . 水利水运工程学报, 2021, (5): 19-26. doi: 10.12170/20210208004
    [2] 刘杰, 程海峰, 韩露, 叶婷婷, 王珍珍.  流域水沙变化和人类活动对长江口河槽演变的影响 . 水利水运工程学报, 2021, (2): 1-9. doi: 10.12170/20200313001
    [3] 胡腾飞, 施勇, 栾震宇, 陈炼钢, 金秋, 陈黎明, 徐祎凡.  长江宜昌—监利段河床冲淤对宜昌站水沙变化的响应 . 水利水运工程学报, 2020, (4): 48-56. doi: 10.12170/2019062004
    [4] 尚倩倩, 许慧, 李国斌, 高亚军.  三峡水库蓄水前后嘉鱼水道河床演变 . 水利水运工程学报, 2016, (5): 32-38.
    [5] 周银军, 王军, 徐育平, 钱圣.  长江黄陵庙至南津关河段河势分析 . 水利水运工程学报, 2015, (1): 38-46.
    [6] 许足怀, 陈长英, 张幸农, 葛 瑶.  三峡水库蓄水后湘江长沙段低水位变化规律研究 . 水利水运工程学报, 2014, (5): 81-86.
    [7] 严文武.  宁波三江河道水沙特性及冲淤变化规律 . 水利水运工程学报, 2011, (4): -.
    [8] 穆锦斌,张小峰.  荆江-洞庭湖水沙变化影响分析 . 水利水运工程学报, 2011, (1): -.
    [9] 刘亚,李义天,孙昭华,陈飞.  荆江河段水沙条件与主流线特征关系研究 . 水利水运工程学报, 2011, (2): -.
    [10] 刘怀湘,陆永军,左利钦.  三峡变动回水区重点河段演变分析 . 水利水运工程学报, 2011, (4): -.
    [11] 黄文辉,左利钦,陆永军.  长江中游分汊型河道二维水沙数值模拟 . 水利水运工程学报, 2010, (3): -.
    [12] 张绪进,何进朝,母德伟.  上游来水来沙变化及对重庆河段泥沙淤积的影响 . 水利水运工程学报, 2010, (1): -.
    [13] 穆锦斌,张小峰,许全喜.  荆江三口分流分沙变化研究 . 水利水运工程学报, 2008, (3): -.
    [14] 刘怀汉,何明宪.  三峡工程135m蓄水运用对长江中游航道的影响 . 水利水运工程学报, 2003, (1): 49-52.
    [15] 陆长石,蔡守允,佘明富,王建中,汤晓峰,吴素华,谢瑞.  三峡工程初期蓄水回水变动区涪陵河段泥沙模型试验研究 . 水利水运工程学报, 1999, (1): geMap1-.
    [16] 华祖林,徐健.  施工期三峡工程河段流场数值模拟 . 水利水运工程学报, 1998, (1): 72-81.
    [17] 李国英,沈珠江,赵魁芝.  三峡工程二期围堰应力变形分析 . 水利水运工程学报, 1997, (1): -.
    [18] 窦国仁,万声淦,陆长石.  三峡工程变动回水区泥沙淤积的试验研究 . 水利水运工程学报, 1995, (4): -.
    [19] 梁志勇,张德茹.  水沙条件对黄河下游河床演变影响的分析途径──兼论水沙与断面形态关系 . 水利水运工程学报, 1994, (Z1): -.
    [20] 赵士清,窦国仁.  在三峡工程变动回水区中一维全沙数学模型的研究 . 水利水运工程学报, 1990, (2): -.
  • 加载中
图(6) / 表 (3)
计量
  • 文章访问数:  327
  • HTML全文浏览量:  107
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-27
  • 网络出版日期:  2020-09-05
  • 刊出日期:  2020-10-16

/

返回文章
返回