Optimization of water exchange based on RBF surrogate model and particle swarm optimization
-
摘要: 良好的水交换对改善水环境、提高水域周边景观效果等具有十分重要的作用。而引水置换的方法对促进水交换效果显著,但利用数值模拟进行水交换研究耗时长、效率低,且人为改变参数的局限性大,不利于寻找最优的换水方案。为解决这一问题,基于径向基函数(简称RBF)代理模型建立水交换优化模型,并通过粒子群算法求最优解。以某人工岛游艇别墅区港池初拟方案为例,验证该方法的可行性和优越性。算例结果表明:(1)构建的基于RBF代理模型的水交换优化模型精度较高;(2)基于RBF代理模型的水交换优化模型计算1次所需时间量级为秒,而传统数值模拟计算的量级为小时;(3)通过粒子群算法,对建立的基于RBF代理模型的水交换优化模型求解,得到研究区域的最优换水方案。上述最优方案的结果与MIKE21水动力和对流扩散模型的计算结果相符。Abstract: Good water exchange is very essential, not only for improving the water environment, but also for enhancing the landscape effect around the water. The diversion replacement method is significant for promoting water exchange. However, the numerical simulation method used to carry out water exchange research operates at a high time cost with low calculation efficiency. Moreover, artificially changing parameters have numerous limitations and are not conducive for finding the optimal water exchange scheme. To solve this problem, we established the optimization model of water exchange based on the radial basis function (RBF) surrogate model and used the particle swarm optimization to find the optimal solution for the surrogate model. To verify the feasibility and superiority of the method, we established an RBF surrogate model based on the initial plan of the harbor pool of an artificial island yacht villa and solved it. This example showed that: (1) The water exchange optimization model based on the RBF surrogate model had high precision. (2) The order of time required by the water exchange optimization model based on the RBF surrogate model was in seconds, while the order of time required by the traditional numerical simulation was in hours. (3) The particle swarm optimization, used to solve the established water exchange optimization model based on the RBF surrogate model, obtained the optimal water exchange scheme for the study area. The results were compared with the optimal scheme results
obtained through the surrogate model where the difference between the two is negligible. -
表 1 潮位资料
Table 1. Tidal level data
时刻 11:00 11:20 11:30 12:00 12:30 13:00 13:30 14:00 14:30 14:48 15:00 潮位/m −1.50 −1.00 −0.45 0.00 0.50 1.00 1.43 1.89 2.30 2.50 2.63 表 2 人工岛内河道各测点最大流速统计
Table 2. Maximum flow rate statistics of various measuring points in rivers in artificial islands
单位:m/s 测点 实测速度 模拟速度 测点 实测速度 模拟速度 d1 0.74 0.70 d4 0.39 0.35 d2 0.38 0.35 d5 0.90 0.86 d3 0.46 0.41 d6 0.99 1.00 表 3 引水方案样本及数值模拟结果
Table 3. Water diversion scheme and numerical simulation results
样本 开闸时刻 引水时长/min 引水结束最高水位/m 引水结束最低水位/m 平均水位/m 46 h污染物平均浓度/% 1 13:00 20 1.285 1.251 1.279 98.476 2 13:00 40 1.589 1.558 1.573 93.695 3 13:00 60 1.890 1.839 1.884 88.827 4 13:00 80 2.179 2.153 2.171 84.787 $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ 43 14:30 30 6.575 5.107 5.919 52.568 44 14:40 20 7.323 5.632 6.649 49.389 45 14:50 10 4.093 3.263 3.906 66.399 46 14:55 5 2.508 1.700 2.258 83.524 -
[1] 杨莉玲, 王琳, 杨芳, 等. 口外岸线变化对茅尾海潮流动力及水体交换的影响[J]. 海洋环境科学,2019,38(4):582-588. (YANG Liling, WANG Lin, YANG Fang, et al. Impacts of the shoreline change in Qinzhou bay on the tide and water exchange of Maowei sea[J]. Marine Environmental Science, 2019, 38(4): 582-588. (in Chinese) doi: 10.12111/j.mes20190415 [2] 陈妍宇, 宋德海, 鲍献文, 等. 胶州湾跨海大桥对海湾水体交换的影响[J]. 海洋与湖沼,2019,50(4):707-718. (CHEN Yanyu, SONG Dehai, BAO Xianwen, et al. Impact of the cross-bay bridge on water exchange in Jiaozhou Bay, Qingdao, China[J]. Oceanologia et Limnologia Sinica, 2019, 50(4): 707-718. (in Chinese) doi: 10.11693/hyhz20180900211 [3] 匡翠萍, 俞露露, 顾杰, 等. 人工岛对金梦海湾水体交换的影响[J]. 中国环境科学,2019,39(2):757-767. (KUANG Cuiping, YU Lulu, GU Jie, et al. Influences of artificial island on water exchange of Jinmeng Bay[J]. China Environmental Science, 2019, 39(2): 757-767. (in Chinese) doi: 10.3969/j.issn.1000-6923.2019.02.039 [4] 张志飞, 诸裕良, 何杰. 多年围填海工程对湛江湾水动力环境的影响[J]. 水利水运工程学报,2016(3):96-104. (ZHANG Zhifei, ZHU Yuliang, HE Jie. Influences of long term reclamation works on hydrodynamic environment in Zhanjiang bay[J]. Hydro-Science and Engineering, 2016(3): 96-104. (in Chinese) [5] 黄宗伟, 邓斌, 蒋昌波, 等. 环抱式港区水体交换能力数值研究——以闸坡渔港为例[J]. 海洋学研究,2018,36(1):66-74. (HUANG Zongwei, DENG Bin, JIANG Changbo, et al. Numerical simulation of water exchange capability for the encircled harbor: a case study of Zhapo fishing port[J]. Journal of Marine Sciences, 2018, 36(1): 66-74. (in Chinese) doi: 10.3969/j.issn.1001-909X.2018.01.007 [6] 叶上扬. 城市景观湖泊水力改善技术及其数值模拟研究[D]. 上海: 上海交通大学, 2011. YE Shangyang. Research on the hydraulic improvement technology and numerical simulation in urban landscape lakes[D]. Shanghai: Shanghai Jiaotong University, 2011. (in Chinese) [7] 薛欢. 城市湖泊引清调水数值模拟与调度模式研究[D]. 南京: 河海大学, 2007. XUE Huan. Research on clean water diversion numeric simulation and water diversion scheme in urban lake[D]. Nanjing: Hohai University, 2007. (in Chinese) [8] 邵咏絮, 逄勇, 宋为威. 滨江游乐场人工湖水体富营养化整治措施研究[J]. 水资源与水工程学报,2018,29(6):113-121. (SHAO Yongxu, PANG Yong, SONG Weiwei. Research on eutrophication treatment methods of artificial lake in riverside playground[J]. Journal of Water Resources and Water Engineering, 2018, 29(6): 113-121. (in Chinese) [9] LIN H Y, CHEN Z Z, HU J Y, et al. Numerical simulation of the hydrodynamics and water exchange in Sansha Bay[J]. Ocean Engineering, 2017, 139: 85-94. doi: 10.1016/j.oceaneng.2017.04.031 [10] 张学庆, 孙雅杰, 王兴, 等. 海州湾及毗邻海域水交换数值研究[J]. 海洋环境科学,2017,36(3):427-433. (ZHANG Xueqing, SUN Yajie, WANG Xing, et al. Modeling the water exchange in Haizhou bay and adjacent sea[J]. Marine Environmental Science, 2017, 36(3): 427-433. (in Chinese) [11] 龙腾, 刘建, WANG G G, 等. 基于计算试验设计与代理模型的飞行器近似优化策略探讨[J]. 机械工程学报,2016,52(14):79-105. (LONG Teng, LIU Jian, WANG G G, et al. Discuss on approximate optimization strategies using design of computer experiments and metamodels for flight vehicle design[J]. Journal of Mechanical Engineering, 2016, 52(14): 79-105. (in Chinese) doi: 10.3901/JME.2016.14.079 [12] 高学平, 朱洪涛, 闫晨丹, 等. 基于RBF代理模型的调水过程优化研究[J]. 水利学报,2019,50(4):439-447. (GAO Xueping, ZHU Hongtao, YAN Chendan, et al. Study on optimization of water transfer process based on RBF surrogate model[J]. Journal of Hydraulic Engineering, 2019, 50(4): 439-447. (in Chinese) [13] 郭玉雪, 张劲松, 郑在洲, 等. 南水北调东线工程江苏段多目标优化调度研究[J]. 水利学报,2018,49(11):1313-1327. (GUO Yuxue, ZHANG Jinsong, ZHENG Zaizhou, et al. Study on multi-objective optimal operation of Jiangsu Section of South-to-North Water Transfer Project[J]. Journal of Hydraulic Engineering, 2018, 49(11): 1313-1327. (in Chinese) [14] 韩东. 离岸式人工岛内河道水体湍流数值模拟与换水研究[D]. 天津: 天津大学, 2014. HAN Dong. Research on turbulent numerical simulation and water exchange in inner river course of offshore artificial island[D]. Tianjin: Tianjin University, 2014. (in Chinese) [15] 戚蓝, 韩东, 汪彭生, 等. 离岸式人工岛内河水体紊流数值模拟与换水研究[J]. 水道港口,2013,34(5):403-408. (QI Lan, HAN Dong, WANG Pengsheng, et al. Research on turbulent numerical simulation and water exchange in inner river course of offshore artificial island[J]. Journal of Waterway and Harbor, 2013, 34(5): 403-408. (in Chinese) doi: 10.3969/j.issn.1005-8443.2013.05.007 [16] 耿艳芬, 王志力. 基于径向基函数神经网络的河网洪水泥沙预报[J]. 水利水运工程学报,2008(1):47-52. (GENG Yanfen, WANG Zhili. Sediment and flood forecast for river system based on radial basis function[J]. Hydro-Science and Engineering, 2008(1): 47-52. (in Chinese) doi: 10.3969/j.issn.1009-640X.2008.01.008 [17] 顾杰, 胡成飞, 冒小丹, 等. 洋河水库泄洪对近岸海域水质的影响[J]. 海洋环境科学,2017,36(3):441-448. (GU Jie, HU Chengfei, MAO Xiaodan, et al. Influences of the Yanghe reservoir flood discharges on water quality in coastal waters[J]. Marine Environmental Science, 2017, 36(3): 441-448. (in Chinese) [18] 赖宇阳. Isight参数优化理论与实例详解[M]. 北京: 北京航空航天大学出版社, 2012. LAI Yuyang. Isight parameter optimization theory and example[M]. Beijing: Beihang University Press, 2012. (in Chinese) [19] 安伟刚, 李为吉. 改进的粒子群优化算法及其工程应用[J]. 机械科学与技术,2005,24(4):415-417. (AN Weigang, LI Weiji. An improved particle swarm optimization algorithm and its application to engineering[J]. Mechanical Science and Technology, 2005, 24(4): 415-417. (in Chinese) doi: 10.3321/j.issn:1003-8728.2005.04.011 -