Deformation simulation and stability analysis of frame seawall
-
摘要: 以温州框架式海堤为背景,采用有限元强度折减法,分析密排桩结构参数和桩基周围淘蚀对框架式海堤变形及稳定性的影响。计算结果表明:随着密排桩桩长增加,密排桩桩身水平位移不断减小;密排桩径对桩身水平位移的影响较小;密排桩排间距对桩身水平位移基本没有影响;随着桩基周围淘蚀深度的增加,密排桩桩身水平位移不断增大,最大增幅位置都发生在桩顶;随着密排桩桩长和桩径的增加,框架式海堤整体稳定安全系数均增大;密排桩排间距为2.1 m时,框架式海堤整体稳定安全系数最小。Abstract: Taking Wenzhou frame seawall as the background, the finite element strength reduction method is used to analyze the influence of the structural parameters of dense row piles and the erosion around the pile foundation on the deformation and stability of the frame seawall. The results show that with the increase of the length of dense row piles, the horizontal displacement of dense row piles decreases; the influence of the diameter of dense row piles on the horizontal displacement of piles is small; the spacing of dense row piles has little effect on the horizontal displacement of piles; and the horizontal displacement of dense row piles increases with the increase of erosion depth around piles. The maximum locations occur at the top of the pile. With the increase of the length of dense row piles, the overall stability safety factor of frame seawall increases; with the increase of the diameter of dense row piles, the overall stability safety factor of frame seawall increases; when the spacing of dense row piles is 2.1 m, the overall stability safety factor of frame seawall is the smallest.
-
表 1 土层物理力学指标
Table 1. Physical and mechanical indexes of soil layer
土体类型 土层底高程/m 密度/(kg·m−3) 弹性模量/MPa 内摩擦角/° 泊松比 黏聚力/kPa 细砂夹淤泥 −13.66 1 660 16.0 16.9 0.35 5.0 淤泥夹细砂 −21.66 1 670 13.5 15.4 0.35 9.4 淤泥 −25.66 1 600 11.0 14.7 0.35 7.3 淤泥质黏土 −35.66 1 680 13.5 14.3 0.35 10.5 卵石 −71.42 2 200 150.0 36.0 0.35 0 -
[1] 胡晓明, 詹敏杰. 填土作用下桩基框架结构堤防原位观测和数值模拟[J]. 土工基础,2017,31(5):623-627. (HU Xiaoming, ZHAN Minjie. Field observation and numerical simulation of the embankment with pile supported frame structures under backfill loads[J]. Soil Engineering and Foundation, 2017, 31(5): 623-627. (in Chinese) [2] 汤德意. 新型板桩框架海堤特性研究[D]. 杭州: 浙江大学, 2012. TANG Deyi. A study on characteristic of new sheet-piled seawall with frame structure[D]. Hangzhou: Zhejiang University, 2012. (in Chinese) [3] 朱斌, 冯凌云, 柴能斌, 等. 软土地基上海堤变形与失稳的离心模型试验与数值分析[J]. 岩土力学,2016,37(11):3317-3323. (ZHU Bin, FENG Lingyun, CHAI Nengbin, et al. Centrifugal model test and numerical analysis of deformation and stability of seawall on soft clay[J]. Rock and Soil Mechanics, 2016, 37(11): 3317-3323. (in Chinese) [4] 刘江娇, 郑建国, 王奎峰, 等. 强浪作用下土体液化的土质海堤稳定性分析[J]. 水运工程,2016(7):128-133. (LIU Jingjiao, ZHENG Jianguo, WANG Kuifeng, et al. Stability of soil seawall suffering soil liquefaction under action of strong wave[J]. Port & Waterway Engineering, 2016(7): 128-133. (in Chinese) doi: 10.3969/j.issn.1002-4972.2016.07.025 [5] 毛昶熙, 段祥宝, 毛佩郁, 等. 海堤结构型式及抗滑稳定性计算分析[J]. 水利学报,1999(11):30-37. (MAO Changxi, DUAN Xiangbao, MAO Peiyu, et al. Analysis on structural shape of sea dyke and its sliding stability[J]. Journal of Hydraulic Engineering, 1999(11): 30-37. (in Chinese) doi: 10.3321/j.issn:0559-9350.1999.11.006 [6] 林奇, 王伟, 王颖, 等. 潮位涨落过程中海堤渗流及稳定性分析[J]. 人民长江,2011,42(3):83-86, 106. (LIN Qi, WANG Wei, WANG Ying, et al. Seepage and stability analysis of seawalls in progress of tidal level fluctuation[J]. Yangtze River, 2011, 42(3): 83-86, 106. (in Chinese) doi: 10.3969/j.issn.1001-4179.2011.03.022 [7] 胡峰强, 陈育民, 吕黎明. 临堤基础施工对长江堤防稳定性影响的数值模拟[J]. 南昌大学学报(理科版),2013,37(6):594-600. (HU Fengqiang, CHEN Yumin, LÜ Liming. Numerical simulation analysis of the embankment stability of Yangtze river near the foundation construction[J]. Journal of Nanchang University (Natural Science), 2013, 37(6): 594-600. (in Chinese) [8] 王元战, 蔡雅慧. 沉入式大圆筒防波堤稳定性分析的有限元强度折减法[J]. 交通科学与工程,2012,28(3):47-53. (WANG Yuanzhan, CAI Yahui. Stability analysis of the embedded large cylinder breakwater by strength reduction FEM[J]. Journal of Transport Science and Engineering, 2012, 28(3): 47-53. (in Chinese) doi: 10.3969/j.issn.1674-599X.2012.03.010 [9] SHOGAKI T, KUMAGAI N. A slope stability analysis considering undrained strength anisotropy of natural clay deposits[J]. Soils and Foundations, 2008, 48(6): 805-819. doi: 10.3208/sandf.48.805 [10] 胡珩, 董志良. 基于正交试验法的海堤安全监控控制标准[J]. 水利水运工程学报,2014(3):55-61. (HU Heng, DONG Zhiliang. Monitoring control standard for seawall based on orthogonal design[J]. Hydro-Science and Engineering, 2014(3): 55-61. (in Chinese) doi: 10.3969/j.issn.1009-640X.2014.03.009 [11] 郑颖人, 赵尚毅. 有限元强度折减法在土坡与岩坡中的应用[J]. 岩石力学与工程学报,2004,23(19):3381-3388. (ZHENG Yingren, ZHAO Shangyi. Application of strength reduction FEM in soil and rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(19): 3381-3388. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.19.029 [12] 赵尚毅, 郑颖人, 时卫民, 等. 用有限元强度折减法求边坡稳定安全系数[J]. 岩土工程学报,2002,24(3):343-346. (ZHAO Shangyi, ZHENG Yingren, SHI Weimin, et al. Analysis on safety factor of slope by strength reduction FEM[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(3): 343-346. (in Chinese) doi: 10.3321/j.issn:1000-4548.2002.03.017 -