Study on the superposition effect of hydraulic fluctuation in the lower approach channel of the Three Gorges Project
-
摘要: 为深入探索三峡枢纽运行产生的水力波动在下游引航道内的叠加规律,从明渠非恒定流基本方程出发,建立三峡-葛洲坝两坝间河道及三峡枢纽下游引航道的Preissmann四点隐式差分格式数学模型,研究引航道内波动叠加规律,分析河道基流和初始水位对波动特性的影响,并对葛洲坝枢纽流量不变和敞泄时三峡枢纽下游引航道口门和升船机下闸首的水位波动过程进行了回归分析。研究表明:引航道口门的波动过程主要由两坝间净流量所引起的平均涨水过程和以其为平衡轴的振荡过程叠加而成,升船机下闸首水位波动过程则表现为引航道口门波动过程和引航道内往复波流的叠加,其相对波动幅值的衰减过程基本符合指数规律。回归分析得到的表达式,能有效获得引航道水位波动过程,具有较高的模拟精度。Abstract: Hydraulic fluctuation generated by the operation of the project would superpose in the lower approach channel of the Three Gorges Project. To explore the superposition law, we established a mathematical model of the lower approach channel of the Three Gorges Project and the river course between the Three Gorges Dam and the Gezhouba Dam using Preissmann four-point implicit difference scheme, based on the basic equations of unsteady flow in open channel. In this study, the superposition law of water level fluctuation in approach channel was studied, and the influence of channel base flow and initial water level on fluctuation characteristics was analyzed. Under the conditions of constant flow rate or discharging openly of the Gezhouba Project, the regression analysis of water level fluctuations at the lower approach channel entrance of the Three Gorges Project and the lower head of the ship lift was carried out. The results indicated that the water level fluctuation at the lower approach channel entrance resulted from the superposition of the average water rise caused by the net flow between the two dams and the oscillating process around the average water rise. The water level fluctuation at the lower head of the ship lift resulted from the superposition of the water level fluctuation at the lower approach channel entrance and the reciprocating flow wave in the lower approach channel. The attenuation degree of the relative fluctuation amplitude decreased exponentially with time. The expression obtained from the regression analysis could effectively obtain the fluctuation process of water level in the approach channel. The model had high precision.
-
Key words:
- the Three Gorges Project /
- approach channel /
- hydraulic fluctuation /
- superimpose
-
表 1 不同基流条件下相对波动幅值变化规律
Table 1. Change law of relative fluctuation amplitude under different base flow conditions
工况 引航道口门相对波动 升船机下闸首相对波动 工况 引航道口门相对波动 升船机下闸首相对波动 葛洲坝流量不变 ${a_{\rm{e}}}{\rm{ = }}0.04$ ${a_{\rm{l}}}{\rm{ = }}4 \times {10^{{\rm{ - }}6}}{Q_0} + 0.075$ 葛洲坝敞泄 ${a_{\rm{e}}}{\rm{ = }}0.15$ ${a_{\rm{l}}}{\rm{ = }}2 \times {10^{{\rm{ - }}6}}{Q_0} + 0.16$ ${b_{\rm{e}}}{\rm{ = }} - 2 \times {10^{{\rm{ - 5}}}}{Q_0}$ ${b_{\rm{l}}}{\rm{ = }}6 \times {10^{{\rm{ - }}6}}{Q_0} - 0.41$ ${b_{\rm{e}}}{\rm{ = }} - 3 \times {10^{{\rm{ - 5}}}}{Q_0} - 0.1$ ${b_{\rm{l}}}{\rm{ = }} - 0.35$ 表 2 不同初始水位条件下相对波动幅值变化规律
Table 2. Change law of relative fluctuation amplitude under different initial water levels
工况 引航道口门相对波动 升船机下闸首相对波动 工况 引航道口门相对波动 升船机下闸首相对波动 葛洲坝流量不变 ${a_{\rm{e}}} = 0.04$ ${a_{\rm{l} } } = - 0.01{{\textit z}_0} + 0.7$ 葛洲坝敞泄 ${a_{\rm{e}}} = 0.15$ ${a_{\rm{l} } } = - 0.03{{\textit z}_0} + 1.88$ ${b_{\rm{e} } } = - 0.10$ ${b_{\rm{l}}} = - 0.38$ ${b_{\rm{e}}} = - 0.25$ ${b_{\rm{l}}} = - 0.35$ -
[1] 冯民权, 赵明登, 郑邦民. 河渠非恒定流及其物质输运的数值模拟[M]. 北京: 科学出版社, 2012. FENG Minquan, ZHAO Mingdeng, ZHENG Bangmin. Numerical simulation of unsteady flow and transport in river channels[M]. Beijing: Science Press, 2012. (in Chinese) [2] 须清华, 张瑞凯. 通航建筑物应用基础研究[M]. 北京: 中国水利水电出版社, 1999. XU Qinghua, ZHANG Ruikai. Application research foundation of navigation buildings[M]. Beijing: China Water & Power Press, 1999. (in Chinese) [3] 李秋平, 闫金波. 三峡升船机下游引航道水位波动分析[J]. 水利水电快报,2019,40(2):10-13. (LI Qiuping, YAN Jinbo. Analysis of water level fluctuation in downstream approach channel of Three Gorges ship lift[J]. Express Water Resources & Hydropower Information, 2019, 40(2): 10-13. (in Chinese) [4] 郑守仁, 孙尔雨, 杨文俊. 三峡电站调峰与通航问题研究[J]. 水电能源科学,2002,20(2):7-12. (ZHENG Shouren, SUN Eryu, YANG Wenjun. Study on the navigation and power station for hump modulation of Three Gorges and Gezhouba Project[J]. International Journal Hydroelectric Energy, 2002, 20(2): 7-12. (in Chinese) doi: 10.3969/j.issn.1000-7709.2002.02.002 [5] 周作茂, 陈野鹰, 杨忠超. 双线船闸引航道水力特性数值模拟[J]. 水利水运工程学报,2013(4):67-72. (ZHOU Zuomao, CHEN Yeying, YANG Zhongchao. Numerical simulation of hydraulic characteristics of a double-line locks approach channel[J]. Hydro-Science and Engineering, 2013(4): 67-72. (in Chinese) doi: 10.3969/j.issn.1009-640X.2013.04.012 [6] 牛兰花, 张小峰, 李云中. 三峡电站调峰试验两坝间非恒定流原型观测分析[J]. 人民长江,2006,37(12):24-27. (NIU Lanhua, ZHANG Xiaofeng, LI Yunzhong. Non-steady flow prototype observation and analysis between TGP dam and Gezhouba dam during peak regulation test of TGP power station[J]. Yangtze River, 2006, 37(12): 24-27. (in Chinese) doi: 10.3969/j.issn.1001-4179.2006.12.008 [7] 程龙, 李云, 安建峰. 三峡升船机下游引航道非恒定流波动特性试验研究[J]. 水运工程,2016(12):158-163. (CHENG Long, LI Yun, AN Jianfeng. Experiment on the unsteady flow in downstream approach channel of the Three Gorges ship lift[J]. Port & Waterway Engineering, 2016(12): 158-163. (in Chinese) doi: 10.3969/j.issn.1002-4972.2016.12.027 [8] 李中华, 胡亚安. 非恒定水流作用下升船机对接安全预警措施研究[J]. 重庆交通大学学报(自然科学版),2015,34(4):87-90. (LI Zhonghua, HU Ya’an. Security warning measures of shiplift docked with approach in unsteady flow[J]. Journal of Chongqing Jiaotong University (Natural Science), 2015, 34(4): 87-90. (in Chinese) -