Influence of marine organisms adhesion on durability of concrete structures
-
摘要: 为研究海洋生物对混凝土结构的影响机理,分别对海洋动物、植物以及微生物3种类型的海洋生物进行分析,重点讨论3种生物对混凝土结构的腐蚀机理和增强机理,并对其利用和防治进行了详细论述。通过某码头混凝土桩的现场长期暴露试验,研究混凝土内部的氯离子浓度、混凝土电阻率及钢筋电位的分布规律。结果表明,浪溅区的表面氯离子含量低于潮汐区,而混凝土氯离子扩散系数较为接近。贝类生物的聚集作用对混凝土抗氯离子性能具有正负效应:一方面,贝类覆盖区混凝土的表面氯离子含量较低,表明贝类的存在有利于降低混凝土表面氯离子的聚集,在混凝土表面起到物理保护作用,一定程度上有利于阻止氯离子的入侵;另一方面,贝类覆盖区混凝土内氯离子扩散系数大于光滑表面区,贝类的存在可能导致混凝土本体发生变化,削弱了混凝土自身的抗氯离子侵蚀能力,加快了氯离子在混凝土内部的传输。有贝类聚集时,混凝土表面电阻最低,且混凝土内部钢筋的腐蚀电位较负,表明该区域混凝土内部钢筋的腐蚀风险最高,该海域贝类存在可能对混凝土的耐久性能造成不利影响。Abstract: To investigate the influence mechanism of marine organisms on concrete structures, marine organisms were introduced in three categories: marine animals, plants and microorganisms. The corrosion and enhancement mechanisms of marine organisms on concrete structures were analyzed in three categories. Also, the ways of prevention and utilization of the marine organisms were discussed in detail. Through the long term field exposure test of the wharf piles, the distributions of the chloride concentration, concrete resistivity and steel potential in concrete were obtained. The results show that the chloride ion contents at the concrete surface in the splash zone are lower than those of the tidal zone. However, the chloride ion diffusion coefficients of the concrete are fairly close in both of the splash zone and tidal zone. The accumulation of shellfish has both positive and negative effects on the chloride resistance of concrete. On one hand, the chloride ion contents at the surface of concrete covered with shellfish are lower than those without the coverage of shellfish, which indicates that the presence of shellfish might help to reduce the concentration of chloride ions on concrete surface. Shellfish exhibits a physical protection mechanism for the concrete surface, which is beneficial for the prevention of chloride ion ingression into concrete to some extent. On the other hand, the chloride diffusion coefficients of concrete covered by the shellfish are larger than those with the smooth concrete surface. Theoretically speaking, the presence of shellfish may lead to the chemical change of concrete, weaken the chloride resistance of concrete, and eventually accelerate the chloride ion transport in concrete. Additionally, the concrete covered by the shellfish presents the lowest surface resistance, and the reinforcing steel bars embedded in it indicates a relatively negative corrosion potential. Finally, the results demonstrate that the steel reinforcement in the concrete covered by shellfish shows the highest corrosion risk. The existence of shellfish may adversely affect the durability of concrete structures.
-
Key words:
- concrete structure /
- marine organism /
- field exposure test /
- durability
-
表 1 混凝土内部不同深度的氯离子含量
Table 1. Chloride ion concentration at different depths of concrete samples
位置 不同深度氯离子含量(占砂浆质量比)/% 0~
10 mm10~
20 mm20~
30 mm30~
40 mm40~
50 mm50~
60 mm60~
70 mm70~
80 mm80~
90 mm90~
100 mm东北侧桩 浪溅区(无贝类聚集) 0.023 4 0.005 9 0.003 7 0.004 0 0.004 3 0.003 1 0.002 7 0.002 2 0.002 7 0.002 2 潮汐区(无贝类聚集) 0.142 0 0.017 3 0.006 6 0.004 7 0.004 9 0.004 2 0.003 7 0.003 1 0.003 1 0.002 4 潮汐区(有贝类聚集) 0.110 9 0.049 0 0.018 6 0.006 1 0.005 2 0.004 9 0.004 2 0.004 8 0.004 6 0.002 7 西南侧桩 浪溅区(无贝类聚集) 0.013 0 0.006 3 0.005 4 0.004 5 0.005 3 0.003 6 0.002 6 0.002 2 0.003 0 0.002 3 潮汐区(无贝类聚集) 0.135 0 0.012 0 0.007 0 0.005 4 0.005 4 0.004 5 0.003 8 0.003 3 0.002 7 0.002 2 潮汐区(有贝类聚集) 0.110 0 0.047 0 0.017 0 0.006 0 0.004 6 0.003 3 0.002 9 0.004 2 0.003 5 0.003 2 表 2 混凝土电阻率测试结果
Table 2. Test results of concrete resistivity
位置 电阻率/(kΩ·cm) 浪溅区(无贝类聚集) 200 200 200 200 200 200 200 65 200 200 200 200 200 200 200 200 200 66 200 200 潮汐区(无贝类聚集) 95 109 88 107 107 107 80 106 92 83 100 74 109 109 99 87 85 85 91 86 潮汐区(有贝类聚集) 78 105 100 74 95 88 81 105 103 63 107 107 107 93 87 76 90 89 75 46 -
[1] 李言涛, 李红玲. 中国海洋腐蚀科研选题与发展战略[J]. 海洋科学,2001,25(2):29-32. (LI Yantao, LI Hongling. The scientific research projects and developing strategy of Chinese marine corrosion[J]. Marine Sciences, 2001, 25(2): 29-32. (in Chinese) doi: 10.3969/j.issn.1000-3096.2001.02.010 [2] 侯保荣, 张盾, 王鹏. 海洋腐蚀防护的现状与未来[J]. 中国科学院院刊,2016,31(12):1326-1331. (HOU Baorong, ZHANG Dun, WANG Peng. Marine corrosion and protection: current status and prospect[J]. Bulletin of the Chinese Academy of Sciences, 2016, 31(12): 1326-1331. (in Chinese) [3] 刘清风. 基于多离子传输的混凝土细微观尺度多相数值模拟[J]. 硅酸盐学报,2018,46(8):1074-1080. (LIU Qingfeng. Multi-phase modelling of concrete at meso-micro scale based on multi-species transport[J]. Journal of the Chinese Ceramic Society, 2018, 46(8): 1074-1080. (in Chinese) [4] 郭章伟. 纳米银防污剂制备及其对海洋微生物附着的抑制[D]. 上海: 上海海洋大学, 2015. GUO Zhangwei. Research on the nanosilver antifouling preparation and inhibition of the marine bacteria adhesion[D]. Shanghai: Shanghai Ocean University, 2015. (in Chinese) [5] 吕建福, 李杰, 莫照兰, 等. 海洋潮差区混凝土表面微生物16S rDNA分子鉴定[J]. 哈尔滨工程大学学报,2010,31(10):1386-1392. (LÜ Jianfu, LI Jie, MO Zhaolan, et al. Microorganism identification by 16S rDNA of concrete surface exposed to a tidal zone[J]. Journal of Harbin Engineering University, 2010, 31(10): 1386-1392. (in Chinese) doi: 10.3969/j.issn.1006-7043.2010.10.019 [6] 孙红尧, 李震, 陈水根. 耐微生物腐蚀涂料的研制[J]. 水利水运工程学报,2002(2):16-20. (SUN Hongyao, LI Zhen, CHEN Shuigen. Development of anti-microbiologically-influenced-corrosion coatings[J]. Hydro-Science and Engineering, 2002(2): 16-20. (in Chinese) doi: 10.3969/j.issn.1009-640X.2002.02.004 [7] 刘彬, 段继周, 侯保荣. 天然海水中微生物膜对316l不锈钢腐蚀行为研究[J]. 中国腐蚀与防护学报,2012,32(1):48-53. (LIU Bin, DUAN Jizhou, HOU Baorong. Microbiologically influenced corrosion of 316l ss by marine biofilms in seawater[J]. Journal of Chinese Society for Corrosion and Protection, 2012, 32(1): 48-53. (in Chinese) [8] MONTENY J, VINCKE E, BEELDENS A, et al. Chemical, microbiological, and in situ test methods for biogenic sulfuric acid corrosion of concrete[J]. Cement and Concrete Research, 2000, 30(4): 623-634. doi: 10.1016/S0008-8846(00)00219-2 [9] 马士德, 王在东, 赵杰, 等. 海洋污损生物对海工混凝土工程腐蚀性分析[J]. 广西科学院学报,2015,31(3):209-213. (MA Shide, WANG Zaidong, ZHAO Jie, et al. Effects of fouling organisms on the corrosion of marine concrete[J]. Journal of Guangxi Academy of Sciences, 2015, 31(3): 209-213. (in Chinese) doi: 10.3969/j.issn.1002-7378.2015.03.010 [10] 王甲春, 阎培渝. 海洋混凝土污损生物腐蚀机理的研究进展[J]. 混凝土,2009,240(10):24-26. (WANG Jiachun, YAN Peiyu. Literature review of corrosion mechanism of marine fouling organisms on concrete[J]. Concrete, 2009, 240(10): 24-26. (in Chinese) [11] LV J F. Oyster cementation as protective covers for exposed marine concrete[J]. Journal of Wuhan University of Technology (Materials Science Edition), 2009, S1: 217-220. [12] HUGHES P, FAIRHURST D, SHERRINGTON I, et al. Microbial degradation of synthetic fibre-reinforced marine concrete[J]. International Biodeterioration & Biodegradation, 2014, 86: 2-5. [13] ALLWRIGHT H, ENSHAEI H. Investigation of the impact of marine algae on the corrosion of mild steel[J]. Journal of Basic and Applied Scientific Research, 2016, 6(3): 28-37. [14] JAYAKUMAR S H B, SARAVANANE R, SUNDARARAJAN T. Biodeterioration of coastal concrete structures by Macro algae-Chaetomorpha antennina[J]. Journal of Marine Science and Technology, 2011, 19(2): 154-161. [15] ISLANDER R L, DEVINNY J S, MANSFELD F, et al. Microbial ecology of crown corrosion in sewers[J]. Journal of Environmental Engineering-Asce, 1991, 117(6): 751-770. doi: 10.1061/(ASCE)0733-9372(1991)117:6(751) [16] 乐建新, 闫亚楠, 李小燕, 等. 微生物对混凝土的侵蚀机理及其控制的研究[J]. 江苏建材,2006(3):14-16. (LE Jianxin, YAN Yanan, LI Xiaoyan, et al. Corrosion mechanism and control technology of microorganism participation in concrete[J]. Jiangsu Building Materials, 2006(3): 14-16. (in Chinese) [17] 吕建福, 巴恒静, 谭忆秋. 海洋黏细菌对砂浆渗透性和微观结构影响[J]. 建筑材料学报,2013,16(4):694-698. (LU Jianfu, BA Hengjing, TAN Yiqiu. Effect of marine mucus bacterium on permeability and microstructure of mortar[J]. Journal of Building Materials, 2013, 16(4): 694-698. (in Chinese) doi: 10.3969/j.issn.1007-9629.2013.04.025 [18] 王瑞兴, 钱春香. 微生物沉积碳酸钙修复水泥基材料表面缺陷[J]. 硅酸盐学报,2008,36(4):457-464. (WANG Ruixing, QIAN Chunxiang. Restoration of defects on the surface of cement-based materials by microbiologically precipitated CaCO3[J]. Journal of the Chinese Ceramic Society, 2008, 36(4): 457-464. (in Chinese) doi: 10.3321/j.issn:0454-5648.2008.04.006 [19] GHOSH P, MANDAL S, CHATTOPADHYAY B D, et al. Use of microorganism to improve the strength of cement mortar[J]. Cement and Concrete Research, 2005, 35(10): 1980-1983. doi: 10.1016/j.cemconres.2005.03.005 [20] BANG S S, LIPPERT J J, YERRA U, et al. Microbial calcite, a bio-based smart nanomaterial in concrete remediation[J]. International Journal of Smart & Nano Materials, 2010, 1(1): 28-39. [21] 高远, 陆春华, 袁思奇, 等. 海工混凝土氯离子分布概率模型分析与应用[J]. 水利水运工程学报,2016(1):37-43. (GAO Yuan, LU Chunhua, YUAN Siqi, et al. Application analysis of probability model for chloride ion erosion distribution in marine concrete structure[J]. Hydro-Science and Engineering, 2016(1): 37-43. (in Chinese) [22] 延永东, 刘荣桂, 陆春华, 等. 沿海服役混凝土结构氯离子质量分数检测和分析[J]. 水利水运工程学报,2018(4):106-111. (YAN Yongdong, LIU Ronggui, LU Chunhua, et al. Detection and analysis of chloride ions in marine concrete structures in service[J]. Hydro-Science and Engineering, 2018(4): 106-111. (in Chinese) [23] 张俊芝, 王建泽, 孔德玉, 等. 既有水工混凝土氯离子扩散系数的时变模型[J]. 水利水运工程学报,2010(2):14-20. (ZHANG Junzhi, WANG Jianze, KONG Deyu, et al. Time variation model of chloride ions' diffusion coefficient for existing concrete[J]. Hydro-Science and Engineering, 2010(2): 14-20. (in Chinese) -