Numerical simulation of crack propagation in gravity dam heel under in-crack water pressure and earthquake action
-
摘要: 为研究不同工况下,地震与缝面水压力共同作用对重力坝坝踵裂缝扩展的影响,以Koyna重力坝为例,利用扩展有限元法(XFEM)和相互作用积分理论,建立缝面水压力和地震共同作用下的重力坝坝踵裂缝断裂数学模型,研究不同的坝基与坝体弹模比、初始裂缝长度、缝面水压力分布对坝踵裂缝扩展的影响。计算结果表明:在缝面水压力均匀分布、初始裂缝长度一定的情况下,裂缝扩展长度随坝基与坝体弹模比的增大逐渐减小,扩展路径向坝基面靠拢;在坝基与坝体弹模比一定、缝面水压力均匀分布的情况下,裂缝扩展路径随着初始裂缝长度的增加逐渐增加且趋近坝基面;当坝基与坝体弹模比和初始裂缝长度一定时,随着缝面水压力系数的增大,裂缝扩展长度逐渐减小,裂缝逐渐向岩基扩展。
-
关键词:
- 扩展有限元(XFEM) /
- 重力坝 /
- 裂缝扩展 /
- 坝踵 /
- 缝面水压力
Abstract: Aiming to study the influence from the collective effect of the pressure between earthquake and water in the construction joint to the gravity under various working conditions, we took advantages of extended finite element method (XFEM) and interaction integral theory to build a mathematical model of dam crack fracture under the collective effect of water pressure in the construction joint and earthquake, with Koyna gravity dam as an example. During the process, the effects of different dam foundation and dam elastic modulus ratios, length of initial crack and joint surface water pressure distribution on dam crack propagation were studied as well. It is proved by the calculation results that the expanded length of crack gets weakened with the increase of the dam base to dam body elastic modulus ratio on the condition that the crack water pressure distributes evenly and initial length of crack is fixed; when the elastic modulus ratio of dam and dam base is certain and the crack water pressure distributes evenly, the crack propagation route gradually increases with the increase of the initial length of crack and gradually approaches the dam base surface; when the elastic modulus ratio of the dam foundation and the dam body as well as the initial crack length are fixed, as the water pressure of the construction joint coefficient increases, the crack expanding length gradually decreases, and the crack gradually expands to the rock foundation. -
表 1 计算工况
Table 1. Calculation conditions
工况编号 E2/E1 a /m n 1 1.0,1.5,2.0,5.0,10.0 3 0 2 1.0,1.5,2.0,5.0,10.0 5 0 3 1.0,1.5,2.0,5.0,10.0 8 0 4 1.0 3, 5, 8 0 5 1.0 5 0, 1, 2 表 2 等效应力强度因子Keq
Table 2. Calculation table of equivalent stress intensity factor Keq
时间/s Keq/(MPa·m1/2) 时间/s Keq/(MPa·m1/2) 时间/s Keq/(MPa·m1/2) 时间/s Keq/(MPa·m1/2) 时间/s Keq/(MPa·m1/2) 10.1 2.69×106 11.5 4.58×106 12.9 1.31×105 14.3 6.75×106 15.7 5.31×106 10.2 2.94×106 11.6 4.32×106 13.0 1.66×105 14.4 6.45×106 15.8 4.88×106 10.3 3.21×106 11.7 3.89×106 13.1 3.83×105 14.5 7.38×106 15.9 4.66×106 10.4 3.49×106 11.8 3.47×106 13.2 6.47×105 14.6 6.88×106 16.0 4.03×106 10.5 3.79×106 11.9 2.94×106 13.3 1.19×106 14.7 7.23×106 16.1 3.70×106 10.6 4.09×106 12.0 2.49×106 13.4 1.72×106 14.8 7.42×106 16.2 2.97×106 10.7 4.37×106 12.1 1.99×106 13.5 2.37×106 14.9 7.31×106 16.3 2.53×106 10.8 4.63×106 12.2 1.56×106 13.6 2.91×106 15.0 7.30×106 16.4 1.83×106 10.9 4.86×106 12.3 1.11×106 13.7 3.62×106 15.1 6.92×106 16.5 1.20×106 11.0 5.02×106 12.4 7.65×105 13.8 4.18×106 15.2 6.65×106 16.6 5.22×105 11.1 5.12×106 12.5 4.91×105 13.9 4.85×106 15.3 6.93×106 16.7 3.81×104 11.2 5.14×106 12.6 2.70×105 14.0 5.32×106 15.4 6.41×106 16.8 9.26×102 11.3 4.93×106 12.7 1.70×105 14.1 6.15×106 15.5 6.20×106 16.9 4.85×103 11.4 4.86×106 12.8 9.48×104 14.2 6.68×106 15.6 5.41×106 17.0 2.30×105 -
[1] 贾欣. 基于扩展有限元法的重力坝坝踵裂缝分析研究[D]. 郑州: 郑州大学, 2019. JIA Xin. Studies on crack problem in gravity dam heel based on extended finite element method[D]. Zhengzhou: Zhengzhou University, 2019. (in Chinese) [2] BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601-620. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S [3] 杜效鹄, 段云岭, 王光纶. 重力坝断裂数值分析研究[J]. 水利学报,2005,36(9):1035-1042. (DU Xiaohu, DUAN Yunling, WANG Guanglun. Numerical analysis of fracture in gravity dam[J]. Journal of Hydraulic Engineering, 2005, 36(9): 1035-1042. (in Chinese) doi: 10.3321/j.issn:0559-9350.2005.09.003 [4] 方修君, 金峰. 裂隙水流与混凝土开裂相互作用的耦合模型[J]. 水利学报,2007,38(12):1466-1474. (FANG Xiujun, JIN Feng. Coupling model for interaction between fissure water and cracking in concrete[J]. Journal of Hydraulic Engineering, 2007, 38(12): 1466-1474. (in Chinese) doi: 10.3321/j.issn:0559-9350.2007.12.009 [5] 方修君, 金峰, 王进廷. 基于扩展有限元法的Koyna重力坝地震开裂过程模拟[J]. 清华大学学报(自然科学版),2008,48(12):2065-2069. (FANG Xiujun, JIN Feng, WANG Jinting. Seismic fracture simulation of the Koyna gravity dam using an extended finite element method[J]. Journal of Tsinghua University (Science and Technology), 2008, 48(12): 2065-2069. (in Chinese) doi: 10.3321/j.issn:1000-0054.2008.12.010 [6] 董玉文, 任青文. 重力坝水力劈裂分析的扩展有限元法[J]. 水利学报,2011,42(11):1361-1367. (DONG Yuwen, REN Qingwen. An extended finite element method for modeling hydraulic fracturing in gravity dam[J]. Journal of Hydraulic Engineering, 2011, 42(11): 1361-1367. (in Chinese) [7] 高景泉, 郑安兴, 毛前. 基于扩展有限元法的重力坝水力劈裂分析[J]. 水电能源科学,2018,36(10):95-97, 123. (GAO Jingquan, ZHENG Anxing, MAO Qian. Hydraulic fracturing analysis of gravity dam based on extended finite element method[J]. Water Resources and Power, 2018, 36(10): 95-97, 123. (in Chinese) [8] 钟红, 林皋, 李红军. 坝基界面在非线性水压力驱动下的非线性断裂过程模拟[J]. 工程力学,2017,34(4):42-48. (ZHONG Hong, LIN Hao, LI Hongjun. Nonlinear fracture simulation of dam-foundation interface driven by nonlinear water pressure[J]. Engineering Mechanics, 2017, 34(4): 42-48. (in Chinese) [9] 郑志芳, 李宗利, 孙丽丽. 动力荷载作用下裂缝水力劈裂效应研究[J]. 水利水运工程学报,2010(2):45-50. (ZHENG Zhifang, LI Zongli, SUN Lili. Hydraulic fracturing effects of cracks under dynamic loads[J]. Hydro-Science and Engineering, 2010(2): 45-50. (in Chinese) doi: 10.3969/j.issn.1009-640X.2010.02.008 [10] 江守燕, 杜成斌. 动载下缝间应力强度因子计算的扩展有限元法[J]. 应用数学和力学,2013,34(6):586-597. (JIANG Shouyan, DU Chengbing. Evaluation on stress intensity factors at the crack tip under dynamic loads using extended finite element nethods[J]. Applied Mathematics and Mechanics, 2013, 34(6): 586-597. (in Chinese) [11] DAUX C, MOËS N, DOLBOW J, et al. Arbitrary branched and intersecting cracks with the extended finite element method[J]. International Journal for Numerical Methods in Engineering, 2000, 48(12): 1741-1760. doi: 10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L [12] YANG J Z, DEEKS A J. Fully-automatic modelling of cohesive crack growth using a finite element-scaled boundary finite element coupled method[J]. Engineering Fracture Mechanics, 2007, 74(16): 2547-2573. doi: 10.1016/j.engfracmech.2006.12.001 [13] 刘钧玉, 林皋, 胡志强, 等. 裂纹内水压分布对重力坝断裂特性的影响[J]. 土木工程学报,2009,42(3):132-141. (LIU Junyu, LIN Hao, HU Zhiqiang, et al. Effect of in-crack water pressure distribution on the fracture behavior of concrete gravity dams[J]. China Civil Engineering Journal, 2009, 42(3): 132-141. (in Chinese) doi: 10.3321/j.issn:1000-131X.2009.03.022 -