In-situ ground motion parameters test for silty clay and back analysis of model parameters
-
摘要: 为解决目前现场原位地震动参数较难获取的问题,自行研发了土体地震动参数原位试验测试系统,该系统包括可移动系统、荷载伺服系统、动力反应系统和数据采集系统四部分,利用该系统对南京某工程场地进行了土的现场非线性剪切模量试验,得到了粉质黏土的现场非线性剪切模量G-logγ曲线和G/Gmax-logγ曲线,发现当剪应变γ超过0. 1%时,动剪切模量G减小的速度愈来愈快,反映了土在动荷载作用下非线性及应变累积性的特点。此外,基于Martin-Davidenkov模型,采用遗传算法对现场试验结果进行了反演分析,得到了该试验地区较浅土层内的模型参数取值范围。Abstract: In order to solve the problem that in-situ ground motion parameters are difficult to obtain, the in-situ ground motion parameters test system, which includes a mobile system, a load servo system, a dynamic response system, and a data acquisition system and has a wide range of applications, strong controllability and high reliability, was developed to carry out the test of field nonlinear shear modulus of silty clay in Nanjing and obtain the field G-logγ curve and G/Gmax-logγ curve. It is found that when the γ exceeds 0.1%, the G decreases faster and faster, reflecting the nonlinearity and strain accumulation of soil under dynamic loading. In addition, the back analysis of model parameters by genetic algorithm was conducted based on the Martin-Davidenkov model to get the range of model parameters in the shallow soil layer of the test area.
-
Key words:
- ground motion parameters /
- in-situ test /
- shear modulus /
- back analysis /
- seismic safety evaluation
-
表 1 现场测试的加载方案
Table 1. Field loading plan
序号 静荷载/kN 动荷载/kN 序号 静荷载/kN 动荷载/kN 1 10 0.8 11 18 0.8 2 10 1.0 12 18 2.7 3 10 1.6 13 18 5.4 4 10 2.0 14 18 6.5 5 10 2.7 15 18 8.0 6 10 3.2 16 18 11.0 7 10 3.8 17 36 0.8 8 10 4.4 18 36 5.4 9 10 4.9 19 36 16.3 10 10 5.4 20 36 27.2 表 2 两土层G/Gmax-γ模型参数及目标函数值
Table 2. G/Gmax-γ model parameters and objective function values in two soil layers
埋深/m A B γ0/10−4 min f 1-2 1.150 1 0.609 5 68.589 7 0.0431 2-3 1.075 0 0.502 4 68.668 8 0.0433 3-4 1.053 4 0.534 2 68.613 5 0.0310 4-5 1.047 7 0.578 6 68.592 2 0.0432 -
[1] 梁旭, 蔡袁强. 复合地基动弹性模量和阻尼比的试验研究[J]. 土木工程学报,2004,37(1):96-101. (LIANG Xu, CAI Yuanqiang. Study on the elastic modulus and the damping ratio of composite foundation[J]. China Civil Engineering Journal, 2004, 37(1): 96-101. (in Chinese) doi: 10.3321/j.issn:1000-131X.2004.01.018 [2] 尚守平, 卢华喜, 任慧, 等. 粉质粘土动剪切模量的试验对比研究[J]. 岩土工程学报,2006,28(3):410-414. (SHANG Shouping, LU Huaxi, REN Hui, at al. Comparative study on dynamic shear modulus of silty clay[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 410-414. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.03.023 [3] 刘振平, 迟世春, 任宪勇. 基于土石坝动力特性的坝料动力参数反演[J]. 岩土力学,2014,35(9):2594-2601. (LIU Zhenping, CHI Shichun, REN Xianyong. Back analysis of dynamic parameters of dam materials based on earth-rockfill dam dynamic characteristics[J]. Rock and Soil Mechanics, 2014, 35(9): 2594-2601. (in Chinese) [4] 李晶晶, 孔令伟, 金磊. 膨胀土原位剪切模量-剪应变衰减曲线与特征分析[J]. 岩石力学与工程学报,2017,36(4):1032-1039. (LI Jingjing, KONG Lingwei, JIN Lei. In situ shear modulus and shear strain decay curves in expansive soils and analysis of its characteristics[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(4): 1032-1039. (in Chinese) [5] AMOROSO S, LEHANE B M, FAHEY M. Determining G-γ decay curves in sand from a seismic dilatometer test (SDMT)[C]//Proceedings of the 4th International Conference on Geotechnical and Geophysical Site Characterization. Porto de Galinhas, Pernambuco, Brazil: Taylor and Francis Group, 2012: 447-452. [6] 范明桥, 张兴刚, 包孟碟, 等. 地震动力参数现场试验测试系统开发研究[J]. 江苏建筑,2018(6):85-87. (FAN Mingqiao, ZHANG Xinggang, BAO Mengdie, et al. Development of field test system for seismic dynamic parameters[J]. Jiangsu Construction, 2018(6): 85-87. (in Chinese) doi: 10.3969/j.issn.1005-6270.2018.06.028 [7] WONG I G, STOKOE II K H, COX B R, et al. Shear-wave velocity profiling of strong motion sites that recorded the 2001 Nisqually, Washington, earthquake[J]. Earthquake Spectra, 2011, 27(1): 183-212. doi: 10.1193/1.3534936 [8] KURTULUS A, STOKOE II K H. In situ measurement of nonlinear shear modulus of silty soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(10): 1531-1540. doi: 10.1061/(ASCE)1090-0241(2008)134:10(1531) [9] 谢定义. 土动力学[M]. 北京: 高等教育出版社, 2011: 277-299. XIE Dingyi. Soil dynamics[M]. Beijing: Higher Education Press, 2011: 277-299. (in Chinese) [10] 高志兵, 高玉峰, 谭慧明. 饱和黏性土最大动剪切模量的室内和原位试验对比研究[J]. 岩土工程学报,2010,32(5):731-735. (GAO Zhibing, GAO Yufeng, TAN Huiming. Lab and in-situ tests on maximum dynamic shear modulus of saturated clay soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5): 731-735. (in Chinese) [11] 李大虎, 何强, 顾勤平. 加速遗传算法在反演计算土层的剪切模量、阻尼比模型参数值中的应用研究[J]. 东华理工大学学报(自然科学版),2011,34(3):282-287. (LI Dahu, HE Qiang, GU Qinping. Applied research on accelerating genetic algorithm inversion layer in the shear modulus, damping ratio values of model parameters[J]. Journal of East China Institute of Technology (Natural Science), 2011, 34(3): 282-287. (in Chinese) [12] 陈国兴, 刘雪珠. 南京及邻近地区新近沉积土的动剪切模量和阻尼比的试验研究[J]. 岩石力学与工程学报,2004,23(8):1403-1410. (CHEN Guoxing, LIU Xuezhu. Testing study on ratio of dynamic shear moduli and ratio of damping for recently deposited soils in Nanjing and its neighboring areas[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(8): 1403-1410. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.08.033 -