Three-dimensional numerical simulation analysis of landslide surge in reservoir area
-
摘要: 针对某水库库区的3#变形体滑坡涌浪问题,采用三维数值模拟方法分析库区滑坡涌浪传播过程,研究网格尺寸对数值分析计算精度的影响,同时建立1∶280的水工物理模型进行验证,并与潘家铮法计算的涌浪高度进行对比。结果表明:数值分析计算精度与模拟网格尺寸、涌浪剧烈程度及涌浪传播距离有关;三维数值分析和物理模型试验得到的涌浪高度变化曲线的趋势基本一致,涌浪传播至坝前时,各种方法得到的坝前涌浪高度误差较小,数值分析结果可作为大坝安全影响的评价依据。3#变形体形成的涌浪在第4次波峰(t=151 s)时超过坝顶超高约8.37 m,仅占最大坝高的3.3%,且过流量有限,不会对大坝安全构成威胁。Abstract: Aiming at the 3# deformation body landslide surge in a reservoir area, we use three-dimensional numerical simulation to analyze the landslide surge propagation process in the reservoir area, and the effect of grid size on the accuracy of numerical analysis calculations is studied. Meanwhile, a 1∶280 hydraulic physical model test is established for verification, and the results are compared with the surge height calculated by the Pan's method. The results show that the calculation accuracy of numerical analysis is related to the model grid size, the severity of the surge, and the distance of the surge. The three-dimensional numerical analysis and model tests have basically the same trend of the surge height. When the surge wave spreads to the front of the dam, the error of the surge height obtained by various methods is small, and the numerical analysis results can be used as the basis for evaluating the dam safety impact. The surge formed by 3# deformation body surpasses the dam crest by about 8.37 m at the 4th peak (t=151 s), only 3.3% of the maximum dam height, and the overflow is limited, which will not pose a threat to dam safety.
-
Key words:
- landslide surge /
- numerical simulation /
- model test /
- dam safety
-
表 1 多种方法得到的库区涌浪高度
Table 1. Surge heights calculated by various calculation methods in the reservoir area
单位:m 计算方法 涌浪高度 落水点对岸 距落水点330 m 坝前,距落水点1 300 m 潘家铮法 4.84 4.10 3.18 数值分析
(有/无挡水建筑物)13.54 9.65 10.86/4.29 水工物理模型试验 23.35 18.87 13.74 -
[1] 索丽生, 刘宁. 水工设计手册(第10卷): 边坡工程与地质灾害防治[M]. 2版. 北京: 中国水利水电出版社, 2013. SUO Lisheng, LIU Ning. Hydraulic design manual (Vol10): Slope engineering and geological disaster prevention and control[M]. 2nd ed. Beijing: China Water and Power Press, 2013. (in Chinese) [2] 周桂云, 李同春, 钱七虎. 水库滑坡涌浪传播有限元数值模拟[J]. 岩土力学,2013,34(4):1197-1201. (ZHOU Guiyun, LI Tongchun, QIAN Qihu. Finite element numerical simulation of water waves due to reservoir landslides[J]. Rock and Soil Mechanics, 2013, 34(4): 1197-1201. (in Chinese) [3] 邓成进, 袁秋霜, 侯延华, 等. 基于FLUENT的库区涌浪数值模拟[J]. 水利水运工程学报,2014(3):84-91. (DENG Chengjin, YUAN Qiushuang, HOU Yanhua, et al. Numerical simulation of the surge based on FLUENT software[J]. Hydro-Science and Engineering, 2014(3): 84-91. (in Chinese) doi: 10.3969/j.issn.1009-640X.2014.03.013 [4] 李静, 陈健云, 徐强, 等. 滑坡涌浪对坝面冲击压力的影响因素研究[J]. 水利学报,2018,49(2):232-240. (LI Jing, CHEN Jianyun, XU Qiang, et al. Study on the influence factors of landslide surge wave on the impact pressure on dam’s surface[J]. Journal of Hydraulic Engineering, 2018, 49(2): 232-240. (in Chinese) [5] VACONDIO R, MIGNOSA P, PAGANI S. 3D SPH numerical simulation of the wave generated by the Vajont rockslide[J]. Advances in Water Resources, 2013, 59: 146-156. doi: 10.1016/j.advwatres.2013.06.009 [6] 赵兰浩, 杨庆庆, 李同春. 地震作用下土质库岸边坡失稳运动及初始涌浪数值模拟方法[J]. 水力发电学报,2011,36(6):104-108. (ZHAO Lanhao, YANG Qinqin, LI Tongchun. Numerical simulation of landsliding and initial surges for soil banks of reservoir under earthquake action[J]. Journal of Hydroelectric Engineering, 2011, 36(6): 104-108. (in Chinese) [7] VIROULET S, CÉBRON D, KIMMOUN O, et al. Shallow water waves generated by subaerial solid landslides[J]. Geophysical Journal International, 2013, 193(2): 747-762. doi: 10.1093/gji/ggs133 [8] 任坤杰, 金峰, 徐勤勤. 滑坡涌浪垂面二维数值模拟[J]. 长江科学院院报,2006,23(2):1-4. (REN Kunjie, JIN Feng, XU Qinqin. Vertical two-dimensional numerical simulation for landslide-generated waves[J]. Journal of Yangtze River Scientific Research Institute, 2006, 23(2): 1-4. (in Chinese) doi: 10.3969/j.issn.1001-5485.2006.02.001 [9] 刘广宁, 黄波林, 王世昌, 等. 三峡库区箭穿洞危岩体涌浪数值模拟分析[J]. 长江科学院院报,2013,30(10):37-41. (LIU Guangning, HUANG Bolin, WANG Shichang, et al. Numerical simulation on waves generated by the instability of Jianchuandong perilous rock in Three Gorges Reservoir Area[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(10): 37-41. (in Chinese) doi: 10.3969/j.issn.1001-5485.2013.10.008 [10] 戚蓝, 陈辉, 费文才, 等. 基于精确河道地形的溢流坝泄流三维数值模拟[J]. 水力发电学报,2016,35(10):12-20. (QI Lan, CHEN Hui, FEI Wencai, et al. Three-dimensional numerical simulations of flows over spillway dam using accurate river terrain[J]. Journal of Hydroelectric Engineering, 2016, 35(10): 12-20. (in Chinese) doi: 10.11660/slfdxb.20161002 [11] 李火坤, 邓冰梅, 曾秀娟, 等. 堤防决口水流水力学特性的三维数值模拟[J]. 水利水运工程学报,2016(6):29-36. (LI Huokun, DENG Bingmei, ZENG Xiujuan, et al. 3D numerical simulation of hydraulics characteristics of levee breach flow[J]. Hydro-Science and Engineering, 2016(6): 29-36. (in Chinese) [12] YAKHOT V, ORSZAG S A. Renormalization group analysis of turbulence. I. Basic theory[J]. Journal of Scientific Computing, 1986, 1(1): 3-51. doi: 10.1007/BF01061452 [13] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. doi: 10.1016/0021-9991(81)90145-5 [14] 哈秋舲, 胡维德. 水库滑坡涌浪计算[J]. 人民黄河,1980(2):30-36. (HA Qiuling, HU Weide. Calculation of landslide surges in reservoirs[J]. Yellow River, 1980(2): 30-36. (in Chinese) [15] 李静, 陈健云, 卢国帅. 地震滑坡涌浪作用下重力坝的损伤分析[J]. 自然灾害学报,2015,24(5):19-26. (LI Jing, CHEN Jianyun, LU Guoshuai. Damage analysis of gravity dam suffered from earthquake landslide surge[J]. Journal of Natural Disasters, 2015, 24(5): 19-26. (in Chinese) -