留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄河流域砒砂岩区地貌-植被-侵蚀耦合研究进展

申震洲 姚文艺 肖培青 饶良懿 李勉 杨吉山 焦鹏 荆诚然

申震洲,姚文艺,肖培青,等. 黄河流域砒砂岩区地貌-植被-侵蚀耦合研究进展[J]. 水利水运工程学报,2020(4):64-71 doi:  10.12170/20191229002
引用本文: 申震洲,姚文艺,肖培青,等. 黄河流域砒砂岩区地貌-植被-侵蚀耦合研究进展[J]. 水利水运工程学报,2020(4):64-71 doi:  10.12170/20191229002
(SHEN Zhenzhou, YAO Wenyi, XIAO Peiqing, et al. Research progress of spatial distribution about geomorphology-vegetation-water erosion in Pisha stone area of Yellow River[J]. Hydro-Science and Engineering, 2020(4): 64-71. (in Chinese)) doi:  10.12170/20191229002
Citation: (SHEN Zhenzhou, YAO Wenyi, XIAO Peiqing, et al. Research progress of spatial distribution about geomorphology-vegetation-water erosion in Pisha stone area of Yellow River[J]. Hydro-Science and Engineering, 2020(4): 64-71. (in Chinese)) doi:  10.12170/20191229002

黄河流域砒砂岩区地貌-植被-侵蚀耦合研究进展

doi: 10.12170/20191229002
基金项目: 国家重点研发计划资助项目(2017YFC0504503);国家自然科学基金资助项目(41201267)
详细信息
    作者简介:

    申震洲(1980—),男,河南安阳人,博士,正高级工程师,主要从事水土保持工作。E-mail:shenzz@139.com

    通讯作者:

    姚文艺(E-mail:wyyao@yrihr.com.cn

  • 中图分类号: S157.1

Research progress of spatial distribution about geomorphology-vegetation-water erosion in Pisha stone area of Yellow River

  • 摘要: 砒砂岩地区是黄河中游粗泥沙来源的核心区,是黄河流域生态保护的重点。揭示黄河中游砒砂岩地区地貌植被侵蚀耦合规律,对于砒砂岩区生态综合治理具有重要的理论指导价值。本文评述了砒砂岩区侵蚀地貌特征、植被生境空间分异规律、侵蚀空间分异规律,以及砒砂岩区地貌-植被-侵蚀空间耦合关系研究进展,并展望了其研究发展趋势。同时,提出了今后应加强研究的方向:应着重从机理层面对砒砂岩区的地形地貌空间结构分异特征、植被生境和群落分异特征及侵蚀时空分异特征进行深入研究,特别是将三者作为一个耦合系统的因素进行研究,解决制约砒砂岩区水土流失综合治理理论水平提升与实践的瓶颈问题;研究不同地貌单元的土壤侵蚀年内时空分异性特征及其成因,揭示坡沟系统水蚀年内时空分异性特征与自然植被时空分异性特征的耦合机理;揭示砒砂岩区地貌-植被-水蚀空间耦合机理。本综述可为黄河流域砒砂岩区生态保护、侵蚀规律研究及高质量发展提供一定参考。
  • 图  1  覆土砒砂岩的岩石互层结构

    Figure  1.  Interbedded structure in soil-covered Pisha stone

    图  2  砒砂岩分布范围

    Figure  2.  Distribution range of Pisha stone

    图  3  裸露和覆土砒砂岩区地形地貌

    Figure  3.  Bared and soil-covered Pisha stone area

  • [1] 习近平. 在黄河流域生态保护和高质量发展座谈会上的讲话[J]. 求是,2019(20):1-2. (XI Jinping. Speech at the symposium on ecological protection and high-quality development in the Yellow River basin[J]. Qiushi, 2019(20): 1-2. (in Chinese)
    [2] 唐政洪, 蔡强国, 李忠武, 等. 内蒙古砒砂岩地区风蚀、水蚀及重力侵蚀交互作用研究[J]. 水土保持学报,2001,15(2):25-29. (TANG Zhenghong, CAI Qiangguo, LI Zhongwu, et al. Study on interaction among wind erosion, hydraulic erosion and gravity erosion in sediment-rock region of Inner Mongolia[J]. Journal of Soil and Water Conservation, 2001, 15(2): 25-29. (in Chinese) doi:  10.3321/j.issn:1009-2242.2001.02.007
    [3] 毕慈芬, 邰源林, 王富贵, 等. 防止砒砂岩地区土壤侵蚀的水土保持综合技术探讨[J]. 泥沙研究,2003(3):63-65. (BI Cifen, TAI Yuanlin, WANG Fugui, et al. Probe to integrated soil conservation techniques for soil erosion prevention in soft rock areas[J]. Journal of Sediment Research, 2003(3): 63-65. (in Chinese) doi:  10.3321/j.issn:0468-155X.2003.03.014
    [4] 姚文艺, 时明立, 吴智仁, 等. 砒砂岩区二元立体配置治理技术及示范效果[J]. 人民黄河,2016,38(6):1-7, 10. (YAO Wenyi, SHI Mingli, WU Zhiren, et al. Management technology and demonstration effect on two-dimensional configuration in Pisha sandstone area[J]. Yellow River, 2016, 38(6): 1-7, 10. (in Chinese) doi:  10.3969/j.issn.1000-1379.2016.06.001
    [5] 王愿昌, 吴永红, 寇权, 等. 砒砂岩分布范围界定与类型区划分[J]. 中国水土保持科学,2007,5(1):14-18. (WANG Yuanchang, WU Yonghong, KOU Quan, et al. Definition of arsenic rock zone borderline and its classification[J]. Science of Soil and Water Conservation, 2007, 5(1): 14-18. (in Chinese) doi:  10.3969/j.issn.1672-3007.2007.01.003
    [6] 周成虎, 程维明, 钱金凯, 等. 中国陆地1∶100万数字地貌分类体系研究[J]. 地球信息科学学报,2009,11(6):707-724. (ZHOU Chenghu, CHENG Weiming, QIAN Jinkai, et al. Research on the classification system of digital land geomorphology of 1: 1 000 000 in China[J]. Journal of Geo-Information Science, 2009, 11(6): 707-724. (in Chinese) doi:  10.3969/j.issn.1560-8999.2009.06.006
    [7] 汤国安, 那嘉明, 程维明. 我国区域地貌数字地形分析研究进展[J]. 测绘学报,2017,46(10):1570-1591. (TANG Guoan, NA Jiaming, CHENG Weiming. Progress of digital terrain analysis on regional geomorphology in China[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1570-1591. (in Chinese) doi:  10.11947/j.AGCS.2017.20170388
    [8] 闾国年, 钱亚东, 陈钟明. 基于栅格数字高程模型提取特征地貌技术研究[J]. 地理学报,1998,53(6):562-570. (LV Guonian, QIAN Yadong, CHEN Zhongming. Automated extraction of the characteristics of topography from grid digital elevation data[J]. Acta Geographica Sinica, 1998, 53(6): 562-570. (in Chinese) doi:  10.3321/j.issn:0375-5444.1998.06.012
    [9] 张磊. 基于核心地形因子分析的黄土地貌形态空间格局研究[D]. 南京: 南京师范大学, 2013.

    ZHANG Lei. Study on loess morphological spatial pattern based on core topography factor analysis[D]. Nanjing: Nanjing Normal University, 2013. (in Chinese)
    [10] 杨先武, 钱叶青, 郑春霞. 喀斯特峰林峰丛地貌形态表达研究综述[J]. 地理与地理信息科学,2017,33(4):22-27. (YANG Xianwu, QIAN Yeqing, ZHENG Chunxia. Research review on the morphology of Karst Fenglin and Fengcong landforms[J]. Geography and Geo-Information Science, 2017, 33(4): 22-27. (in Chinese) doi:  10.3969/j.issn.1672-0504.2017.04.004
    [11] 张传才, 秦奋, 汪永新, 等. 流域地貌形态多尺度三维分形量化及尺度效应——以砒砂岩区二老虎沟为例[J]. 水土保持研究,2016,23(1):278-283, 288. (ZHANG Chuancai, QIN Fen, WANG Yongxin, et al. Multi-scale quantification of topographic feature using three-dimensional fractal model and its scale effect in watershed——a case of the two-tiger valley of Pisha sandstone area[J]. Research of Soil and Water Conservation, 2016, 23(1): 278-283, 288. (in Chinese)
    [12] 张传才, 秦奋, 王海鹰, 等. 砒砂岩区地貌形态三维分形特征量化及空间变异[J]. 地理科学,2016,36(1):142-148. (ZHANG Chuancai, QIN Fen, WANG Haiying, et al. Quantization and spatial variation of topographic features using 3D fractal dimensions in arsenic rock area[J]. Scientia Geographica Sinica, 2016, 36(1): 142-148. (in Chinese)
    [13] 顾畛逵, 师长兴, 阳辉, 等. 内蒙古十大孔兑流域地貌演化格局及其成因机制[J]. 干旱区地理,2017,40(6):1188-1197. (GU Zhenkui, SHI Changxing, YANG Hui, et al. Landform evolution pattern of the ten Kongdui Basins and its genetic mechanisms in Inner Mongolia of China[J]. Arid Land Geography, 2017, 40(6): 1188-1197. (in Chinese)
    [14] 卢金发, 黄秀华. 黄河中游地区流域产沙中的地貌临界现象[J]. 山地学报,2004,22(2):147-153. (LU Jinfa, HUANG Xiuhua. Thresholds in variation of sediment yield in the middle Yellow River Basin[J]. Journal of Mountain Science, 2004, 22(2): 147-153. (in Chinese) doi:  10.3969/j.issn.1008-2786.2004.02.003
    [15] D’OLEIRE-OLTMANNS S, MARZOLFF I, PETER K D, et al. Unmanned Aerial Vehicle (UAV) for monitoring soil erosion in morocco[J]. Remote Sensing, 2012, 4(11): 3390-3416. doi:  10.3390/rs4113390
    [16] DIAZ-VARELA R A, ZARCO-TEJADA P J, ANGILERI V, et al. Automatic identification of agricultural terraces through object-oriented analysis of very high resolution DSMs and multispectral imagery obtained from an unmanned aerial vehicle[J]. Journal of Environmental Management, 2014, 134: 117-126. doi:  10.1016/j.jenvman.2014.01.006
    [17] TONKIN T N, MIDGLEY N G, GRAHAM D J, et al. The potential of small unmanned aircraft systems and structure-from-motion for topographic surveys: a test of emerging integrated approaches at Cwm Idwal, North Wales[J]. Geomorphology, 2014, 226: 35-43. doi:  10.1016/j.geomorph.2014.07.021
    [18] GONÇALVES J A, HENRIQUES R. UAV photogrammetry for topographic monitoring of coastal areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 104: 101-111. doi:  10.1016/j.isprsjprs.2015.02.009
    [19] 杨振奇, 秦富仓, 张晓娜, 等. 砒砂岩区不同立地类型人工沙棘林下草本物种多样性环境解释[J]. 生态学报,2008,38(14):5132-5140. (YANG Zhenqi, QIN Fucang, ZHANG Xiaona, et al. Environmental interpretation of herb species diversity under different site types of Hippophae rhamnoides forest in feldspathic sandstone region[J]. Acta Ecologica Sinica, 2008, 38(14): 5132-5140. (in Chinese)
    [20] 曾月娥. 砒砂岩区典型地域植被类型空间配置研究[D]. 呼和浩特: 内蒙古农业大学, 2013.

    ZENG Yuee. Space allocation of vegetation type in typical areas of sandstone areas[D]. Hohhot: Inner Mongolia Agricultural University, 2013. (in Chinese)
    [21] 赵利清. 准格尔黄土丘陵沟壑区沟谷植被研究[D]. 内蒙古大学, 2008.

    ZHAO Liqing. Study on the gully vegetation of Junger Loess hill-gully region[D]. Hohhot: Inner Mongolia University, 2008. (in Chinese)
    [22] 宫传刚, 卞正富, 卞和方, 等. 基于UVA与植被指数的排土场DEM模型构建关键技术[J]. 煤炭学报,2019,44(12):3849-3858. (GONG Chuangang, BIAN Zhengfu, BIAN Hefang, et al. Key technology of DEM model construction based on UVA and vegetation index in dump soil field[J]. Journal of China Coal Society, 2019, 44(12): 3849-3858. (in Chinese)
    [23] 李东升, 刘海红, 张兵良, 等. 基于无人机影像的绿色植被提取方法[J]. 昆明冶金高等专科学校学报,2019,35(4):58-65. (LI Dongsheng, LIU Haihong, ZHANG Bingliang, et al. Application research of green vegetation extraction method based on UAV image[J]. Journal of Kunming Metallurgy College, 2019, 35(4): 58-65. (in Chinese)
    [24] 查骏雄. 无人机航拍技术在小流域土壤侵蚀分析中的应用分析[J]. 水利技术监督,2019(6):135-137, 211. (ZHA Junxiong. Application analysis of UAV aerial photography technology in soil erosion analysis of small watershed[J]. Technical Supervision in Water Resources, 2019(6): 135-137, 211. (in Chinese)
    [25] 王兵, 刘国彬, 张光辉, 等. 基于DPSIR 概念模型的黄土丘陵区退耕还林(草)生态环境效应评估[J]. 水利学报,2013,44(2):143-153. (WANG Bing, LIU Guobin, ZHANG Guanghui, et al. Evaluating eco-environmental effects of “Grain for green” project based on DPSIR framework in the Loess hilly region[J]. Journal of Hydraulic Engineering, 2013, 44(2): 143-153. (in Chinese) doi:  10.3969/j.issn.0559-9350.2013.02.005
    [26] TIAN J L, LIU P L. REE tracer method for studies on soil erosion[J]. International Journal of Sediment Research, 1994, 9(2): 37-41.
    [27] 张攀, 姚文艺, 刘国彬, 等. 砒砂岩区典型小流域复合侵蚀动力特征分析[J]. 水利学报,2019,50(11):1384-1391. (ZHANG Pan, YAO Wenyi, LIU Guobin, et al. Dynamic characteristics of complex erosion in a typical small watershed of soft sandstone area[J]. Journal of Hydraulic Engineering, 2019, 50(11): 1384-1391. (in Chinese)
    [28] 王文君, 陈新闯, 郭建英, 等. 砒砂岩区土壤侵蚀时空分布特征及预测模拟[J]. 内蒙古林业科技,2018,44(4):1-6. (WANG Wenjun, CHEN Xinchuang, GUO Jianying, et al. Spatial and temporal distribution characteristics and prediction simulation of soil erosion in feldspathic sandstone area[J]. Inner Mongolia Forestry Science and Technology, 2018, 44(4): 1-6. (in Chinese) doi:  10.3969/j.issn.1007-4066.2018.04.001
  • [1] 马黎, 钟启明, 杨蒙, 吴迪, 李大成, 梅胜尧.  新疆射月沟水库溃坝过程数值模拟 . 水利水运工程学报, 2023, (): 1-10. doi: 10.12170/20221116001
    [2] 喻志强, 曹浩, 王正勇, 程卫帅.  长江经济带生态系统健康评估及时空变化特征 . 水利水运工程学报, 2022, (4): 28-36. doi: 10.12170/20200519001
    [3] 陈波, 詹明强, 黄梓莘.  基于时空聚类挖掘的库岸边坡位移监测数据约简 . 水利水运工程学报, 2022, (5): 94-101. doi: 10.12170/20210728002
    [4] 谢晓云, 韩东睿, 林颖典.  层结环境下刚性植被群对异重流影响的数值模拟 . 水利水运工程学报, 2022, (1): 77-88. doi: 10.12170/20210129003
    [5] 梁超, 张金良, 练继建.  地震作用下渗流边坡的动力响应耦合分析 . 水利水运工程学报, 2017, (1): 18-25. doi: 10.16198/j.cnki.1009-640X.2017.01.003
    [6] 张信贵, 许胜才, 易念平.  基于流固耦合理论的饱和-非饱和土开挖边坡稳定性分析 . 水利水运工程学报, 2016, (3): 10-19.
    [7] 吴福生, 阮仕平, 冯新权.  龙潭沟水库溢流坝泄洪消能局部冲刷试验研究 . 水利水运工程学报, 2014, (1): 62-69.
    [8] 姬昌辉, 洪大林, 丁瑞, 申霞.  含淹没植被明渠水位及糙率变化试验研究 . 水利水运工程学报, 2013, (1): 60-65.
    [9] 涂扬举;王文涛;薛新华.  瀑布沟高心墙土石坝渗流分析 . 水利水运工程学报, 2013, (5): 77-82.
    [10] 秦鹏,秦植海.  岩质高边坡监测数据的改进变维分形预测模型 . 水利水运工程学报, 2010, (1): -.
    [11] 陆桂华,金君良,吴志勇,何海.  水文模型植被参数获取方法及应用研究 . 水利水运工程学报, 2009, (4): -.
    [12] 秦鹏,秦植海.  基于分形理论的岩质高边坡监测资料分析 . 水利水运工程学报, 2008, (3): -.
    [13] 朱红钧,赵振兴,韩璐.  有植被的河道水流紊动特性模型试验研究 . 水利水运工程学报, 2006, (4): 57-61.
    [14] 沈珠江,米占宽.  膨胀土渠道边坡降雨入渗和变形耦合分析 . 水利水运工程学报, 2004, (3): 7-11.
    [15] 李雷,盛金保.  沟后坝砂砾料的工程特性 . 水利水运工程学报, 2000, (3): 27-32.
    [16] 赵坚,张祝添,速宝玉.  三峡永久船闸高边坡排水系统的研究 . 水利水运工程学报, 1999, (4): 389-394.
    [17] 盛金保,王仁钟.  沟后坝溃决的稳定分析 . 水利水运工程学报, 1996, (2): -.
    [18] 陈生水,郦能惠.  瀑布沟心墙堆石坝地震裂缝分析 . 水利水运工程学报, 1995, (4): -.
    [19] 李君纯.  沟后面板坝溃决的研究 . 水利水运工程学报, 1995, (4): -.
    [20] 司洪洋,朱铁.  小干沟混凝土面板堆石坝利用砂砾石料的研究 . 水利水运工程学报, 1990, (3): -.
  • 加载中
图(3)
计量
  • 文章访问数:  582
  • HTML全文浏览量:  195
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-29
  • 网络出版日期:  2020-08-20
  • 刊出日期:  2020-08-26

/

返回文章
返回