Experimental study on frost heaving characteristics of silty clay in Qiqihar region
-
摘要: 黑龙江省受寒冬负温影响,容易引起渠道渗漏、地基下陷、轨道不顺等问题,这增加了工程建设难度。为解决实际问题,以齐齐哈尔地区粉质黏土为研究对象,进行封闭系统下的人工冻结试验,对冻胀试验数据进行分析,研究不同含水率、干密度、冷端温度及冻结速率条件下土体的冻结过程及冻胀率的变化规律。试验结果表明:冻胀率在含水率高、干密度大、冷端温度低、冻结速率低的条件下,土体冻胀现象更为显著,且冻胀率与4个因素相关性较好。冻胀正交分析结果表明:冷端温度对冻胀率的影响程度最弱,干密度较强,含水率的影响最为剧烈。采用SPSS统计分析软件,建立含水率、干密度和冷端温度三因素综合影响下的冻胀率多元线性回归模型,模型拟合效果好、可信度高、精度高,满足实际需求,操作简便,可用于粉质黏土的相关计算和预测。Abstract: Heilongjiang Province is affected by cold winter negative temperature, which is easy to cause channel leakage, foundation subsidence, track irregularity and other problems, which increase the difficulty of engineering construction. In order to solve the practical problems, taking the silty clay in Qiqihar region as the research object, the artificial freezing test in the closed system was carried out, and the frost heave test data were measured and analyzed, to investigate the freezing process of soil and the change of the frost heaving ratio under different moisture contents, dry densities, cold end temperatures and freezing rates. The test results show that: under the conditions of high moisture content, high dry density, low cold end temperature, and low freezing rate, the phenomenon of soil frost heaving is more significant, and the frost heaving ratio has a good correlation with the four factors. The results of frost heave orthogonal analysis show that the influence of cold end temperature on frost heaving rate is the weakest, the influence of dry density is strong, and the effect of moisture content is the most severe. Using SPSS statistical analysis software, a multiple linear regression model of frost heave rate is established under the comprehensive influence of moisture content, dry density and cold end temperature. The model has the advantages of good fitting effect, high reliability, high accuracy, meeting the actual needs, simple operation, and can be used for the correlation calculation and prediction of silty clay.
-
表 1 冻胀试验正交分析
Table 1. Orthogonal analysis of frost heave test
试验编号 T/℃ ρd /(g∙cm−3) ω/% 冻胀率/% 1 −9 1.50 20 1.03 2 −9 1.55 22 1.17 3 −9 1.60 24 1.78 4 −12 1.50 22 1.25 5 −12 1.55 24 1.55 6 −12 1.60 20 1.44 7 −15 1.50 24 1.58 8 −15 1.55 20 1.09 9 −15 1.60 22 1.47 Yj1 1.327 1.287 1.187 Yj2 1.413 1.270 1.297 Yj3 1.380 1.563 1.637 Rj 0.086 0.293 0.450 -
[1] 陈肖柏, 刘建坤, 刘鸿绪, 等. 土的冻结作用与地基[M]. 北京: 科学出版社, 2006. CHEN Xiaobai, LIU Jiankun, LIU Hongxu, et al. Frost action of soil and foundation engineering[M]. Beijing: Science Press, 2006. (in Chinese) [2] 宋迎俊, 许雷, 鲁洋, 等. 基于正交设计的膨胀土冻融循环试验研究[J]. 水利水运工程学报,2017(2):51-58. (SONG Yingjun, XU Lei, LU Yang, et al. Experimental studies on freeze-thaw cycles of expansive soil based on orthogonal design[J]. Hydro-Science and Engineering, 2017(2): 51-58. (in Chinese) [3] 王天亮, 岳祖润. 细粒含量对粗粒土冻胀特性影响的试验研究[J]. 岩土力学,2013,34(2):359-364, 388. (WANG Tianliang, YUE Zurun. Influence of fines content on frost heaving properties of coarse grained soil[J]. Rock and Soil Mechanics, 2013, 34(2): 359-364, 388. (in Chinese) [4] 巩丽丽, 刘德仁, 杨楠, 等. 季节性冻土区路基土体冻胀影响因素灰色关联分析[J]. 水利水运工程学报,2019(1):28-34. (GONG Lili, LIU Deren, YANG Nan, et al. Comprehensive analysis on frost heave factors of subgrade soil in seasonally frozen ground region[J]. Hydro-Science and Engineering, 2019(1): 28-34. (in Chinese) [5] 尚松浩, 雷志栋, 杨诗秀. 冻结条件下土壤水热耦合迁移数值模拟的改进[J]. 清华大学学报(自然科学版),1997,37(8):62-64. (SHANG Songhao, LEI Zhidong, YANG Shixiu. Numerical simulation improvement of coupled moisture and heat transfer during soil freezing[J]. Journal of Tsinghua University (Science and Technology), 1997, 37(8): 62-64. (in Chinese) [6] 蔡光华, 陆海军, 刘松玉. 温度梯度下压实黏土的水热迁移规律和渗透特性[J]. 东北大学学报(自然科学版),2017,38(6):874-879. (CAI Guanghua, LU Haijun, LIU Songyu. Moisture-heat migration laws and permeability of compacted clay under temperature gradient[J]. Journal of Northeastern University (Natural Science), 2017, 38(6): 874-879. (in Chinese) [7] 汪恩良, 刘风波, 刘兴超, 等. 考虑温控模式对非饱和土冻结规律研究[J]. 应用基础与工程科学学报,2018,26(6):1247-1258. (WANG Enliang, LIU Fengbo, LIU Xingchao, et al. Experimental study on frost heave and moisture transfer model of unsaturated soil with different temperature control[J]. Journal of Basic Science and Engineering, 2018, 26(6): 1247-1258. (in Chinese) [8] 王彦虎, 王旭, 杨楠, 等. 基于BP神经网络的人工盐渍土冻胀预测研究[J]. 路基工程,2018(2):14-18. (WANG Yanhu, WANG Xu, YANG Nan, et al. Study on frost heave forecast of artificial saline soil based on BP neural network[J]. Subgrade Engineering, 2018(2): 14-18. (in Chinese) [9] YANG P, KE J M, WANG J G, et al. Numerical simulation of frost heave with coupled water freezing, temperature and stress fields in tunnel excavation[J]. Computers and Geotechnics, 2006, 33(6/7): 330-340. [10] 宋玲, 欧阳辉, 余书超. 混凝土防渗渠道冬季输水运行中冻胀与抗冻胀力验算[J]. 农业工程学报,2015,31(18):114-120. (SONG Ling, OUYANG Hui, YU Shuchao. Frozen heaving and capacity of frozen heaving resistance of trapezoidal concrete lining canal with water in winter[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(18): 114-120. (in Chinese) doi: 10.11975/j.issn.1002-6819.2015.18.017 [11] 肖旻, 王正中, 刘铨鸿, 等. 考虑冻土双向冻胀与衬砌板冻缩的大型渠道冻胀力学模型[J]. 农业工程学报,2018,34(8):100-108. (XIAO Min, WANG Zhengzhong, LIU Quanhong, et al. Mechanical model for frost heave damage of large-sized canal considering bi-directional frost heave of frozen soil and lining plate frozen shrinkage[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(8): 100-108. (in Chinese) doi: 10.11975/j.issn.1002-6819.2018.08.013 [12] 唐益群, 洪军, 杨坪, 等. 人工冻结作用下淤泥质黏土冻胀特性试验研究[J]. 岩土工程学报,2009,31(5):772-776. (TANG Yiqun, HONG Jun, YANG Ping, et al. Frost-heaving behaviors of mucky clay by artificial horizontal freezing method[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 772-776. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.05.021 [13] 王永涛, 王大雁, 郭妍, 等. 青藏粉土单向冻结冻胀率变化特性研究[J]. 冰川冻土,2016,38(2):409-415. (WANG Yongtao, WANG Dayan, GUO Yan, et al. Experimental study of the development characteristic of frost heaving ratio of the saturated Tibetan silt under one-dimensional freezing[J]. Journal of Glaciology and Geocryology, 2016, 38(2): 409-415. (in Chinese) [14] 汪恩良, 张守杰, 韩红卫, 等. 工程冻土与水工建筑物冻害防治技术[M]. 北京: 中国水利水电出版社, 2019. WANG Enliang, ZHANG Shoujie, HAN Hongwei, et al. Engineering frozen soil and prevention technology of freezing damage of hydraulic structure[M]. Beijing: China Water & Power Press, 2019. (in Chinese) [15] 吴礼舟, 许强, 黄润秋. 非饱和黏土的冻胀融沉过程分析[J]. 岩土力学,2011,32(4):1025-1028. (WU Lizhou, XU Qiang, HUANG Runqiu. Analysis of freezing-thawing test process of unsaturated clay[J]. Rock and Soil Mechanics, 2011, 32(4): 1025-1028. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.04.012 [16] 程佳, 赵相卿, 杨晓明. 青藏铁路多年冻土区典型土样冻胀率特性研究[J]. 冰川冻土,2011,33(4):863-866. (CHENG Jia, ZHAO Xiangqing, YANG Xiaoming. Research of frost-heaving ratio of typical soil samples from permafrost regions of Golmud-Lhasa railway[J]. Journal of Glaciology and Geocryology, 2011, 33(4): 863-866. (in Chinese) [17] 张海银. 人工冻结黏土冻胀特性试验研究[D]. 淮南: 安徽理工大学, 2013. ZHANG Haiyin. Experimental study on the frost heave characteristics of artificial freezing clay[D]. Huainan: Anhui University of Science and Technology, 2013. (in Chinese) -