The future water resources regime of the Yellow River basin in the context of climate change
-
摘要: 开展流域水资源变化趋势研究是水资源规划和开发利用的基础工作。基于RCPs(Representative Concentration Pathways)排放情景下7个全球气候模式的气候情景资料,分析了黄河流域未来气温及降水的变化趋势;采用RCCC-WBM模型动态模拟了黄河流域未来水资源情势。结果表明:黄河流域在未来30年(2021—2050年)气温将持续显著升高(线性升率为0.24~0.35 ℃/(10 a));与基准期(1961—1990年)相比,流域降水总体可能增多,但对降水变化预估的不确定性较大;受气候变化影响,黄河流域未来水资源量较基准期的可能会略微偏少,流域水资源供需矛盾可能进一步加剧;不确定性及其带来的评估风险是目前及未来气候变化影响及水资源评估中需要加强研究的重要内容。Abstract: The future water resources prediction is a fundamental work for water resources planning and sustainable utilization. Based on the RCPs climate change scenarios of 7 GCMs projections, the variation trend of temperature and precipitation in the coming decades over the Yellow River basin were investigated, and the future water resources of the Yellow River basin were simulated by using RCCC-WBM model and downscaled climate change projections. The results show that: (1) Temperature will probably continue to rise significantly with a linear rising rate of 0.24~0.35 ℃/(10 a); (2) The future precipitation will likely increase slightly, with a higher uncertainty; (3) As a result of climate change, water resources over the Yellow River basin will probably decrease in the coming decades, which will aggravate the conflict of water supply and demands to some extent. The research on the uncertainty and the induced-risk in future water resources prediction is a major issue which needs to be enhanced in the further study.
-
Key words:
- the Yellow River basin /
- climate change /
- water resources /
- variation trend
-
表 1 本研究采用的7个气候模式基本信息
Table 1. Basic information of 7 CMIP5 GCMs used in this study
序号 全球气候模式 国家 序号 全球气候模式 国家 1 GISS-E2 美国 5 MIROC 日本 2 CNRM-CM5 法国 6 BNU 中国 3 MPI 德国 7 BCC-CSM 中国 4 MRI-CGCM3 日本 表 2 黄河流域典型子流域基本信息及1955—1969年径流模拟效果
Table 2. Basic information of typical catchments of the Yellow River and runoff simulation results for 1955-1969
序号 控制站 水系 集水面积/km2 率定期1955—1965年 验证期1966—1969年 f NSE/% e RE/% f NSE/% e RE/% 1 华县 渭河 106 498 87.9 2.7 86.6 3.5 2 河津 汾河 38 728 74.7 1.1 74.5 2.3 3 状头 北洛河 25 645 65.8 1.3 65.3 2.8 4 黑石关 伊洛河 18 563 84.2 2.4 83.4 4.2 5 洪德 泾河 4 640 61.2 1.0 60.9 1.5 6 大宁 黄河 3 992 85.6 1.2 85.8 2.1 7 王道恒塔 窟野河 3 839 63.2 −2.5 62.1 −3.3 8 横山 无定河 2 415 63.7 2.4 62.6 4.9 9 平凉 泾河 1 305 73.5 −0.2 68.5 3.3 10 兴县 黄河 650 74.4 4.0 70.5 4.1 11 延川 清涧河 3 468 66.5 3.4 63.9 3.7 12 后大成 三川河 4 102 78.3 −0.2 75.8 2.8 13 唐乃亥 黄河 121 972 76.2 1.9 74.8 3.4 14 红旗 洮河 24 973 72.2 1.3 72.7 2.8 15 民和 湟水 15 342 86.5 0.4 86.9 0.8 16 享堂 大通河 15 126 78.1 0.5 74.0 3.6 17 折桥 大夏河 6 843 65.2 3.4 62.3 −2.1 18 秦安 渭河 9 805 72.1 −1.3 66.3 2.4 19 龙门 黄河 497 552 70.4 −2.3 67.4 3.7 20 花园口 黄河 730 036 68.9 −2.2 65.8 2.6 -
[1] IPCC. Climate change 2013: the physical science basis[M]. New York: Cambridge University Press, 2013. [2] 张建云, 王国庆. 气候变化对水文水资源影响研究[M]. 北京: 科学出版社, 2007. ZHANG Jianyun, WANG Guoqing. Impact of climate change on hydrology and water resources[M]. Beijing: Science Press, 2007. (in Chinese) [3] 赵建华, 刘翠善, 王国庆, 等. 近60年来黄河流域气候变化及河川径流演变与响应[J]. 华北水利水电大学学报(自然科学版),2018,39(3):1-5, 12. (ZHAO Jianhua, LIU Cuishan, WANG Guoqing, et al. Evolution of stream flow in the Yellow River during the past 60 years and its response to climate change[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2018, 39(3): 1-5, 12. (in Chinese) [4] WANG G Q, WANG Y Y. Managing water for sustainable utilization as china warms[J]. International Journal of Environmental Sciences & Natural Resources, 2019, 17(1): 555952. doi: 10.19080/IJESNR.2019.17.555952 [5] 刘绿柳, 刘兆飞, 徐宗学. 21世纪黄河流域上中游地区气候变化趋势分析[J]. 气候变化研究进展,2008,4(3):167-172. (LIU Lüliu, LIU Zhaofei, XU Zongxue. Trends of climate change for the upper-middle reaches of the Yellow River in the 21st century[J]. Advances in Climate Change Research, 2008, 4(3): 167-172. (in Chinese) doi: 10.3969/j.issn.1673-1719.2008.03.007 [6] 李发鹏, 徐宗学, 刘星才, 等. 大气环流模式在松花江流域的适用性评价[J]. 水文,2011,31(6):24-31. (LI Fapeng, XU Zongxue, LIU Xingcai, et al. Assessment on performance of different general circulation models in Songhuajiang River Basin[J]. Hydrology, 2011, 31(6): 24-31. (in Chinese) doi: 10.3969/j.issn.1000-0852.2011.06.005 [7] 史瑞琴, 陈正洪, 陈波. 华中地区2030年前气温和降水量变化预估[J]. 气候变化研究进展,2008,4(3):173-176. (SHI Ruiqin, CHEN Zhenghong, CHEN Bo. Projection of changes in temperature and precipitation over central china from 2001 to 2030[J]. Advances in Climate Change Research, 2008, 4(3): 173-176. (in Chinese) doi: 10.3969/j.issn.1673-1719.2008.03.008 [8] 曾小凡, 李巧萍, 苏布达, 等. 松花江流域气候变化及ECHAM5模式预估[J]. 气候变化研究进展,2009,5(4):215-219. (ZENG Xiaofan, LI Qiaoping, SU Buda, et al. Change and projection of climate in the Songhua River Basin[J]. Advances in Climate Change Research, 2009, 5(4): 215-219. (in Chinese) doi: 10.3969/j.issn.1673-1719.2009.04.005 [9] 王国庆, 管晓祥, 王乐扬, 等. 气候变化和人类活动对黄河重点区间径流的影响[J]. 人民黄河,2019,41(10):26-30, 39. (WANG Guoqing, GUAN Xiaoxiang, WANG Yueyang, et al. Impacts of climate change and human activities on stream flow of the key runoff generation areas of the Yellow River Basin[J]. Yellow River, 2019, 41(10): 26-30, 39. (in Chinese) doi: 10.3969/j.issn.1000-1379.2019.10.006 [10] WANG G Q, ZHANG J Y, PAGANO T C, et al. Simulating the hydrological responses to climate change of the Xiang River Basin, China[J]. Theoretical and Applied Climatology, 2016, 124(3/4): 769-779. [11] LABAT D, GODDÉRIS Y, PROBST J L, et al. Evidence for global runoff increase related to climate warming[J]. Advances in Water Resources, 2004, 27(6): 631-642. doi: 10.1016/j.advwatres.2004.02.020 [12] 金君良, 王国庆, 刘翠善, 等. 气候变化下海河流域未来水资源演变趋势[J]. 华北水利水电大学学报(自然科学版),2016,37(5):1-6. (JIN Junliang, WANG Guoqing, LIU Cuishan, et al. Future evolution trends of water resources in Haihe River Basin under the climate change[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2016, 37(5): 1-6. (in Chinese) [13] 姜燕敏, 吴昊旻. 20个CMIP5模式对中亚地区年平均气温模拟能力评估[J]. 气候变化研究进展,2013,9(2):110-116. (JIANG Yanmin, WU Haomin. Simulation capabilities of 20 CMIP5 models for annual mean air temperatures in Central Asia[J]. Progressus Inquisitiones de Mutatione Climatis, 2013, 9(2): 110-116. (in Chinese) doi: 10.3969/j.issn.1673-1719.2013.02.005 [14] 王国庆, 李健. 气候异常对黄河中游水资源影响评价网格化水文模型及其应用[J]. 水科学进展,2000,11(6):22-26. (WANG Guoqing, LI Jian. Grid based assessment model for climate change impact on water resources in the middle reaches of the Yellow River basin[J]. Advances in Water Science, 2000, 11(6): 22-26. (in Chinese) [15] WANG G Q, ZHANG J Y, JIN J L, et al. Regional calibration of a water balance model for estimating stream flow in ungauged areas of the Yellow River Basin[J]. Quaternary International, 2014, 336: 65-72. doi: 10.1016/j.quaint.2013.08.051 [16] GUAN X X, ZHANG J Y, ELMAHDI A, et al. The capacity of the hydrological modeling for water resource assessment under the changing environment in semi-arid river basins in China[J]. Water, 2019, 11(7): 1328. doi: 10.3390/w11071328 [17] NASH J E, SUTCLIFFE J. River flow forecasting through conceptual models part I-a discussion of principles[J]. Journal of Hydrology, 1970, 10(3): 282-290. doi: 10.1016/0022-1694(70)90255-6 [18] 孙颖, 秦大河, 刘洪滨. IPCC第五次评估报告不确定性处理方法的介绍[J]. 气候变化研究进展,2012,8(2):150-153. (SUN Ying, QIN Dahe, LIU Hongbin. Introduction to treatment of uncertainties for IPCC fifth assessment report[J]. Progressus Inquisitiones de Mutatione Climatis, 2012, 8(2): 150-153. (in Chinese) doi: 10.3969/j.issn.1673-1719.2012.02.012 [19] 魏洁, 畅建霞, 陈磊. 基于VIC模型的黄河上游未来径流变化分析[J]. 水力发电学报,2016,35(5):65-74. (WEI Jie, CHANG Jianxia, CHEN Lei. Runoff change in upper reach of Yellow River under future climate change based on VIC model[J]. Journal of Hydroelectric Engineering, 2016, 35(5): 65-74. (in Chinese) doi: 10.11660/slfdxb.20160508 [20] 唐芳芳, 徐宗学, 左德鹏. 黄河上游流域气候变化对径流的影响[J]. 资源科学,2012,34(6):1079-1088. (TANG Fangfang, XU Zongxue, ZUO Depeng. Response of runoff to climate change in the upper Yellow River Basin[J]. Resources Science, 2012, 34(6): 1079-1088. (in Chinese) [21] 周帅, 王义民, 郭爱军, 等. 黄河流域未来水资源时空变化[J]. 水力发电学报,2018,37(3):28-39. (ZHOU Shuai, WANG Yimin, GUO Aijun, et al. Spatial and temporal features of future changes in water resources in Yellow River Basin[J]. Journal of Hydroelectric Engineering, 2018, 37(3): 28-39. (in Chinese) doi: 10.11660/slfdxb.20180304 -