留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相对差异函数的海绵城市弹性评价

冯峰 靳晓颖 刘翠 冯跃华

冯峰,靳晓颖,刘翠,等. 基于相对差异函数的海绵城市弹性评价[J]. 水利水运工程学报,2021(1):53-61 doi:  10.12170/20200318002
引用本文: 冯峰,靳晓颖,刘翠,等. 基于相对差异函数的海绵城市弹性评价[J]. 水利水运工程学报,2021(1):53-61 doi:  10.12170/20200318002
(FENG Feng, JIN Xiaoying, LIU Cui, et al. Resilience evaluation of sponge city based on relative difference function[J]. Hydro-Science and Engineering, 2021(1): 53-61. (in Chinese)) doi:  10.12170/20200318002
Citation: (FENG Feng, JIN Xiaoying, LIU Cui, et al. Resilience evaluation of sponge city based on relative difference function[J]. Hydro-Science and Engineering, 2021(1): 53-61. (in Chinese)) doi:  10.12170/20200318002

基于相对差异函数的海绵城市弹性评价

doi: 10.12170/20200318002
基金项目: 国家自然科学基金资助项目(51809110);2019年度河南省水利科技攻关计划项目(GG201939);2021年河南省高等学校重点科研项目(21B570003)
详细信息
    作者简介:

    冯 峰(1978—),女,河南驻马店人,教授,博士,主要从事水资源高效利用、海绵城市关键技术等研究。E-mail:fengfeng_624@163.com

  • 中图分类号: TV213.9

Resilience evaluation of sponge city based on relative difference function

  • 摘要: 针对海绵城市中观尺度的区域水系统综合评价问题,引入工程弹性的理念,构建了由生态弹性、工程弹性、自然弹性和社会弹性4个维度共17个影响因子的弹性指标体系,基于相对差异函数的模糊可变评价模型,对17个指标5个级别(极强、较强、中等、较弱、极弱)弹性阈值进行说明和界定。以开封市为研究实例进行评价计算,结果显示:2013年、2014年和2015年系统弹性为Ⅴ级,表明这3年开封市的海绵城市水系统具有极弱的弹性;2016年、2017年为Ⅳ级,开封市海绵城市水系统弹性为中等。同时对2013年、2017年的17个指标的相对隶属度覆盖等级进行对比,与开封海绵城市建设和成效进行对照分析,评价结果与实际情况高度吻和,均发生了明显的弹性增强过程。经过实例计算可得基于相对差异函数的海绵城市水系统弹性评价体系构建合理,针对中观尺度的评价区域,能够通过指标信息确定对应的相对隶属度,获得精准的评价结果,为海绵城市提高水系统弹性提供可靠的理论依据和数据支持。
  • 图  1  海绵城市中观尺度水系统弹性评价体系

    Figure  1.  Resilience evaluation system of mesoscale water system in sponge city

    图  2  区间X0X的关系

    Figure  2.  Diagram of interval X0 and X

    图  3  开封市海绵城市水系统弹性各指标相对隶属度分布对比

    Figure  3.  Relative membership distribution of each index of water system resilience in sponge city of Kaifeng in 2013 and 2017

    表  1  开封市海绵城市水系统弹性评价指标(2013—2017年)

    Table  1.   Resilience evaluation index of water system in sponge city of Kaifeng (2013—2017)

    影响因素指标指标编号2013年2014年2015年2016年2017年
    生态弹性维度(5) 硬化地面斑块面积率(%) I1 72.26 73.73 74.94 80.44 82.89
    植被斑块面积率(%) I2 26.66 23.34 22.37 16.83 14.47
    水域斑块面积率(%) I3 1.08 2.93 2.68 2.73 2.63
    生态环境用水率(%) I4 1.90 1.00 9.50 12.30 13.80
    空气质量良好率(%) I5 38.35 47.67 60.54 62.19 51.23
    工程弹性维度(3) 排水管道长度(km) I6 1469 1387 1475 1542 1604
    排水泵站数量(个) I7 22 22 22 23 24
    河道治理长度(km) I8 16.00 8.50 16.00 22.50 32.50
    自然弹性维度(5) 降雨量(mm) I9 389.9 529.5 598.0 566.4 591.0
    雨水资源利用潜力(106m3 I10 37.12 38.81 40.16 39.03 44.19
    产水模数(104m3/km2 I11 14.20 14.10 14.30 14.30 15.70
    地下水资源模数(104m3/km2 I12 11.50 10.30 10.90 10.80 11.90
    地下水漏斗面积(>8 m深)(km2 I13 210 270 252 287 280
    社会弹性维度(4) 雨水资源经济效益(亿元) I14 1.40 1.96 2.05 1.30 1.55
    雨水资源生态效益(亿元) I15 8.52 7.91 7.73 5.55 9.87
    景观娱乐用水区水质 I16 劣Ⅴ类 劣Ⅴ类 劣Ⅴ Ⅴ类 Ⅴ类
    万元GDP用水量 (m3/万元) I17 94.00 80.00 86.00 62.70 60.70
      注:表中“万元GDP用水量”为对应统计当年价格。
    下载: 导出CSV

    表  2  开封市海绵城市水系统弹性阈值分级标准(Ⅴ级)

    Table  2.   Classification standard of water system resilience threshold in sponge city of Kaifeng (Ⅴ)

    指标指标类型Ⅰ级Ⅱ级Ⅲ级Ⅳ级Ⅴ级
    (极强弹性)(较强弹性)(中等弹性)(较弱弹性)(极弱弹性)
    I1 递减 0~20 20~35 35~50 50~75 75~100
    I2 递增 75~100 50~75 35~50 20~35 0~20
    I3 递增 15~25 10~15 5~10 1~5 0~1
    I4 递增 15~25 10~15 5~10 1~5 0~1
    I5 递增 80~100 70~80 60~70 50~60 0~50
    I6 递增 2 000~2 200 1 800~2 000 1 400~1 800 1 000~1 400 0~1 000
    I7 递增 30~40 30~28 24~28 20~24 0~20
    I8 递增 55~60 40~55 25~40 10~25 0~10
    I9 递增 662.7~773.1 552.2~662.7 441.8~552.2 331.4~441.8 0~331.4
    I10 递增 55~60 49~55 42~49 35~42 0~35
    I11 递增 50.0~55.0 36.6~50.0 23.3~36.6 10.0~23.3 0~10.0
    I12 递增 50.0~55.0 36.6~50.0 23.3~36.6 10.0~23.3 0~10.0
    I13 递减 0~55 55~128 128~201 201~273 273~345
    I14 递增 8~10 6~8 4~6 2~4 0~2
    I15 递增 20~25 15~20 10~15 5~10 0~5
    I16 递减 I Ⅴ(劣Ⅴ)
    I17 递减 0~15 15~50 50~100 100~150 150~200
    下载: 导出CSV

    表  3  开封市海绵城市水系统弹性评价结果

    Table  3.   Evaluation results of water system resilience in sponge city of Kaifeng

    年份系统等权向量指标等权向量熵值权向量平均值级别海绵城市弹性
    20134.32004.36304.33504.3390较弱弹性
    20144.39604.40304.37604.3920较弱弹性
    20154.07904.07404.01004.0540较弱弹性
    20163.92803.94703.89403.9230中等弹性
    20173.71703.76803.68303.7230中等弹性
    下载: 导出CSV
  • [1] 习近平. 习近平在河南主持召开黄河流域生态保护和高质量发展座谈会[EB/OL]. (2019-09-19)[2020-03-15]. http://www.gov.cn/xinwen/2019-09/19/content_5431299.htm.(XI Jinping. XI Jinping presided over a symposium on ecological protection and high-quality development of the Yellow River Basin in Henan province[EB/OL]. (2019-09-19)[2020-03-15]. http://www.gov.cn/xinwen/2019-09/19/content_5431299.htm.(in Chinese) )
    [2] 俞孔坚. 海绵城市: 理论与实践[M]. 北京: 中国建筑工业出版社, 2016: 81-87.

    YU Kongjian. Sponge city: theory and practice[M]. Beijing: China Architecture & Building Press, 2016: 81-87. (in Chinese)
    [3] DUFTY N. The importance of connected communities to flood resilience[C]//Proceedings of the 8th Victorian Flood Conference. Melbourne, Australia, 2013.
    [4] SCHELFAUT K, PANNEMANS B, VAN DER CRAATS I, et al. Bringing flood resilience into practice: the freeman project[J]. Environmental Science & Policy, 2011, 14(7): 825-833.
    [5] 张灵, 陈晓宏, 千怀遂. 北江下游防洪保护区恢复力诊断[J]. 水利学报,2011,42(9):1129-1134. (ZHANG Ling, CHEN Xiaohong, QIAN Huaisui. Diagnosis of resilience to flood hazard in lower reaches of the Beijiang River[J]. Journal of Hydraulic Engineering, 2011, 42(9): 1129-1134. (in Chinese)
    [6] LIU D D, CHEN X H, NAKATO T. Resilience assessment of water resources system[J]. Water Resources Management, 2012, 26(13): 3743-3755. doi:  10.1007/s11269-012-0100-7
    [7] 奈杰尔·邓尼特, 安迪·克莱登. 雨水园: 园林景观设计中雨水资源的可持续利用与管理[M]. 周湛曦, 孔晓强, 译. 北京: 中国建筑工业出版社, 2013: 78-86.

    DUNNETT N, CLAYDON A. Rain garden: sustainable utilization and management of rain water resources in landscape design[M]. ZHOU Zhanxi, KONG Xiaoqiang, trans. Beijing: China Architecture & Building Press, 2013: 78-86. (in Chinese)
    [8] 陈守煜. 水资源系统可变集评价原理与方法[J]. 水利学报,2013,44(2):134-142. (CHEN Shouyu. Variable sets assessment theory and method of water resource system[J]. Journal of Hydraulic Engineering, 2013, 44(2): 134-142. (in Chinese) doi:  10.3969/j.issn.0559-9350.2013.02.004
    [9] 陈守煜. 水资源与防洪系统可变模糊集理论与方法[M]. 大连: 大连理工大学出版社, 2005: 156-168.

    CHEN Shouyu. Theories and methods of variable fuzzy sets in water resources and flood control system[M]. Dalian: Dalian University of Technology Press, 2005: 156-168. (in Chinese)
    [10] 张先起, 梁川. 基于熵权的模糊物元模型在水质综合评价中的应用[J]. 水利学报,2005,36(9):1057-1061. (ZHANG Xianqi, LIANG Chuan. Application of fuzzy matter-element model based on coefficients of entropy in comprehensive evaluation of water quality[J]. Journal of Hydraulic Engineering, 2005, 36(9): 1057-1061. (in Chinese) doi:  10.3321/j.issn:0559-9350.2005.09.006
    [11] 吴云星, 谷艳昌, 王士军, 等. 基于信息熵-变权模糊模型的土石坝震损评估[J]. 水利水运工程学报,2018(4):38-45. (WU Yunxing, GU Yanchang, WANG Shijun, et al. Assessment of seismic damage for earth-rockfill dam based on information entropy-variable weight fuzzy model[J]. Hydro-Science and Engineering, 2018(4): 38-45. (in Chinese)
    [12] 靳晓颖, 冯峰, 刘翠. 海绵视角下开封市雨水资源利用潜力及措施研究[J]. 黄河水利职业技术学院学报,2019,31(3):11-16. (JIN Xiaoying, FENG Feng, LIU Cui. Research on rainwater resource utilization potential and measures in Kaifeng based on sponge city[J]. Journal of Yellow River Conservancy Technical Institute, 2019, 31(3): 11-16. (in Chinese)
    [13] 董淑秋, 韩志刚. 基于“生态海绵城市”构建的雨水利用规划研究[J]. 城市发展研究,2011,18(12):37-41. (DONG Suqiu, HAN Zhigang. Study on planning an “eco-sponge city” for rainwater utilization[J]. Urban Studies, 2011, 18(12): 37-41. (in Chinese) doi:  10.3969/j.issn.1006-3862.2011.12.007
    [14] 中华人民共和国住房和城乡建设部. 海绵型建筑与小区雨水控制及利用: 17S705[S]. 北京: 中国计划出版社, 2017: 15-25.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Sponge architecture and district rainwater control and utilization: 17S705[S]. Beijing: China Planning Press, 2017: 15-25. (in Chinese)
    [15] 国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准: GB 3838—2002[S]. 北京: 中国环境科学出版社, 2002: 10-13.

    State Environmental Protection Administration, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Environmental quality standards for surface water: GB 3838—2002[S]. Beijing: China Environmental Science Press, 2002: 10-13. (in Chinese)
    [16] 冯峰, 靳晓颖, 谢秋晧. 区域水资源可持续发展能力的模糊可变评价[J]. 人民黄河,2017,39(3):45-50, 54. (FENG Feng, JIN Xiaoying, XIE Qiuhao. Research on water resources carrying capacity based on nature-society binary pattern and fuzzy variable method[J]. Yellow River, 2017, 39(3): 45-50, 54. (in Chinese) doi:  10.3969/j.issn.1000-1379.2017.03.011
  • [1] 冯峰, 喻谦花, 罗福生, 霍继超, 冯跃华, 靳晓颖, 刘翠.  开封市7.20特大暴雨城市内涝风险评估 . 水利水运工程学报, 2022, (4): 11-21. doi: 10.12170/20210824002
    [2] 王士军, 谷艳昌, 葛从兵.  大坝安全监测系统评价体系 . 水利水运工程学报, 2019, (4): 63-67. doi: 10.16198/j.cnki.1009-640X.2019.04.009
    [3] 诸发文, 陆志华, 蔡梅, 王元元.  太湖流域平原河网区水系连通性评价 . 水利水运工程学报, 2017, (4): 52-58. doi: 10.16198/j.cnki.1009-640X.2017.04.008
    [4] 宋占智, 蒋尚明, 金菊良, 周玉良, 张明.  蚌埠市农业旱灾脆弱性综合评价 . 水利水运工程学报, 2017, (3): 56-63. doi: 10.16198/j.cnki.1009-640X.2017.03.008
    [5] 戴文渊, 张芮, 成自勇, 宋众艳, 刘静霞, 马奇梅.  白银市水生态安全评价研究 . 水利水运工程学报, 2015, (4): 92-97.
    [6] 刘本芹, 宣国祥, 李中华.  船闸集中输水系统复合模型研究与应用 . 水利水运工程学报, 2013, (4): 78-83.
    [7] 李君,洪娟,李中华.  设置消能竖井的船闸输水系统水力计算数学模型 . 水利水运工程学报, 2010, (2): -.
    [8] 李君,张瑞凯,宣国祥.  内消能工在船闸输水系统中的应用分析 . 水利水运工程学报, 2008, (3): -.
    [9] 黄伦超,李伟.  船闸短廊道输水系统最优kv取值探讨 . 水利水运工程学报, 2006, (3): 45-48.
    [10] 须清华.  分散输水系统船闸出水孔段廊道的水工模型缩尺影响 . 水利水运工程学报, 2000, (3): 65-68.
    [11] 葛从兵,李雷,谢晓华.  土石坝安全监测资料分析评价系统 . 水利水运工程学报, 2000, (3): 58-61.
    [12] 杨方,崔信民.  南京市防汛决策支持信息系统 . 水利水运工程学报, 2000, (4): 37-42.
    [13] 吴雷,李云,吴时强.  GIS在城市暴雨雨水管理系统建设中的应用 . 水利水运工程学报, 1999, (4): 395-401.
    [14] 须清华.  关于船闸输水系统型式选择标准的探讨 . 水利水运工程学报, 1999, (3): 233-.
    [15] 宣国祥,张瑞凯,宗慕伟.  单级船闸输水系统分析及水力计算软件包 . 水利水运工程学报, 1994, (Z1): -.
    [16] 陈泰春.  葛洲坝1号船闸输水系统水力学模型试验研究 . 水利水运工程学报, 1990, (1): -.
    [17] 包纲鉴.  葛洲坝2号船闸输水系统水力学原型观测 . 水利水运工程学报, 1989, (1): -.
    [18] 须清华.  船闸输水系统的水工模型缩尺影响 . 水利水运工程学报, 1985, (4): -.
    [19] 宗慕伟.  集中输水系统船闸主要水力指标的探讨 . 水利水运工程学报, 1981, (1): -.
    [20] 杨裔轩,黄秀章.  郑家岗省水船闸输水系统水力学试验 . 水利水运工程学报, 1980, (1): -.
  • 加载中
图(3) / 表 (3)
计量
  • 文章访问数:  588
  • HTML全文浏览量:  159
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-18
  • 网络出版日期:  2020-12-03
  • 刊出日期:  2021-02-15

/

返回文章
返回