Determination of monitoring index for concrete dam based on improved POT model
-
摘要: 大坝监测效应量作为一种随机变量,采用以极值理论为基础的POT (Peaks over Threshold)模型研究监测效应量的监控指标是合适的,但现有的POT模型的阈值确定以图形法为主,需要人工判断,主观性和随意性较大,且难以实现计算机自动化识别。通过构建阈值递增序列,计算不同阈值
$ {T}_{j} $ 条件下相应的监控指标,然后利用概率论中的3σ准则,以监控指标危险值与警戒值的差值$ {\Delta }_{j} $ 趋近于测值序列标准差S作为确定最合理阈值的原则,提出了一种改进的阈值确定方法,并给出了一个验证实例。改进方法理论基础明确,有效地克服了图形法的主观性和随机误差,且能采用计算机程序实现最合理阈值的自动识别,增强了POT模型法拟定大坝安全监控指标的实用性。-
关键词:
- 监控指标 /
- POT模型 /
- 阈值 /
- 广义Pareto分布 /
- 3σ准则
Abstract: As the dam monitoring effect quantity is a random variable, the peaks over threshold (POT) model based on the extreme value theory can be adopted to study the monitoring index of the monitoring effect quantity. However, the threshold in the existing POT model is usually determined by graphic methods, which require human judgment and lead to strong subjectivity and randomness, and automatic computer identification is difficult to realize. In this study, a threshold increment sequence is constructed and the corresponding monitoring indexes under different thresholds are calculated. An improved threshold determination method is then developed based on the "3σ criterion" in probability theory, in which the most reasonable threshold is selected while the difference between the dangerous value and the warning value of the monitoring index approaches to the standard deviation of the measured value sequence. Verification example shows that the improved method is of a clear theoretical foundation and effectively reduces the subjectivity and random errors of the graphical methods. By using computer programs, automatic recognition of the most reasonable threshold can be realized, which enhances the practicability of the POT model in determination of the dam safety monitoring index.-
Key words:
- monitoring index /
- POT model /
- threshold /
- generalized Pareto distribution /
- 3σ criterion
-
表 1 EX406测点POT模型计算参数
Table 1. Calculation parameters of EX406 measuring point in POT model
项目 样本数 ${T_j}$/mm ${\xi _{{T_j}}}$ ${\sigma _{{T_j}}}$ ${c_j} = \left. {\left| {{\Delta _j} - S} \right.} \right|$ 下游方向 137 4.64 0.03 0.54 0.02 上游方向 99 2.64 0.06 0.68 0.03 -
[1] 李珍照. 大坝安全监测[M]. 北京: 中国电力出版社, 1997. LI Zhenzhao. Dam safety monitoring[M]. Beijing: China Electric Power Press, 1997. (in Chinese) [2] 吴中如, 顾冲时, 沈振中, 等. 大坝安全综合分析和评价的理论、方法及其应用[J]. 水利水电科技进展,1998,18(3):2-6, 65. (WU Zhongru, GU Chongshi, SHEN Zhenzhong, et al. Theory and application of dam safety synthetical analysis and assessment[J]. Advances in Science and Technology of Water Resources, 1998, 18(3): 2-6, 65. (in Chinese) [3] 魏德荣. 大坝安全监控指标的制定[J]. 大坝与安全,2003(6):24-28. (WEI Derong. On working out dam safety monitoring index[J]. Dam and Safety, 2003(6): 24-28. (in Chinese) [4] 何金平,李珍照,薛桂玉,等. 多测点监控数学模型监控指标的分测点拟定[J]. 大坝观测与土工测试,1997,21(4):8-11. (HE Jinping, LI Zhenzhao, XUE Guiyu, et al. Study on the monitoring index using the mathematical monitoring model of multiple survey points[J]. Dam Observation and Geotechnical Tests, 1997, 21(4): 8-11. (in Chinese) [5] 盛金保, 厉丹丹, 蔡荨, 等. 大坝风险评估与管理关键技术研究进展[J]. 中国科学: 技术科学,2018,48(10):1057-1067. (SHENG Jinbao, LI Dandan, CAI Qian, et al. Research progress and its practice of key techniques for dam risk assessment and management[J]. Scientia Sinica Technologica, 2018, 48(10): 1057-1067. (in Chinese) doi: 10.1360/N092018-00277 [6] 王伟, 钟启明, 刘守华, 等. 混凝土坝变形组合预报模型的蛙跳建模方法[J]. 水利水运工程学报,2013(2):9-14. (WANG Wei, ZHONG Qiming, LIU Shouhua, et al. Concrete dam deformation forecasting with combined model based on modeling method in shuffled frog leaping algorithm[J]. Hydro-Science and Engineering, 2013(2): 9-14. (in Chinese) [7] 谷艳昌, 何鲜峰, 郑东健. 基于蒙特卡罗方法的高拱坝变形监控指标拟定[J]. 水利水运工程学报,2008(1):14-19. (GU Yanchang, HE Xianfeng, ZHENG Dongjian. Study on the safety-monitoring index for high arch dams based on Monte-Carlo[J]. Hydro-Science and Engineering, 2008(1): 14-19. (in Chinese) [8] 肖磊, 万智勇, 黄耀英, 等. 基于最大熵和云模型的RCC坝变形监控指标拟定[J]. 水利水运工程学报,2018(4):24-29. (XIAO Lei, WAN Zhiyong, HUANG Yaoying, et al. RCC Dam deformation monitoring index based on maximum entropy and cloud model[J]. Hydro-Science and Engineering, 2018(4): 24-29. (in Chinese) [9] 苏怀智, 王锋, 刘红萍. 基于POT模型建立大坝服役性态预警指标[J]. 水利学报,2012,43(8):974-978, 986. (SU Huaizhi, WANG Feng, LIU Hongping. Early-warning index for dam service behavior based on POT model[J]. Journal of Hydraulic Engineering, 2012, 43(8): 974-978, 986. (in Chinese) [10] 任杰, 苏怀智, 杨孟, 等. 边坡位移预警指标的实时估计与诊断[J]. 水利水运工程学报,2016(1):30-36. (REN Jie, SU Huaizhi, YANG Meng, et al. Real-time estimation and diagnosis of early warning indicator of slope displacement based on POT-catastrophe theory[J]. Hydro-Science and Engineering, 2016(1): 30-36. (in Chinese) [11] 张海龙, 马斌, 梁亚平. 基于广义Pareto分布的大坝预警指标拟定方法[J]. 水力发电,2017,43(6):97-99, 114. (ZHANG Hailong, MA Bin, LIANG Yaping. Warning index development of dam monitoring based on generalized Pareto distribution[J]. Water Power, 2017, 43(6): 97-99, 114. (in Chinese) [12] 宋加山, 李勇, 彭诚, 等. 极值理论中阈值选取的Hill估计方法改进[J]. 中国科学技术大学学报,2008,38(9):1104-1108. (SONG Jiashan, LI Yong, PENG Cheng, et al. Improving the traditional Hill estimator to select the threshold in extreme value theory[J]. Journal of University of Science and Technology of China, 2008, 38(9): 1104-1108. (in Chinese) [13] PICKANDS III J. Statistical inference using extreme order statistics[J]. Annals of Statistics, 1975, 3(1): 119-131. doi: 10.1214/aos/1176343003 [14] 桂文林, 王宗毅, 韩兆洲. POT模型中GPD估计方法选择及金融风险测度[J]. 数学的实践与认识,2010,40(5):66-71. (GUI Wenlin, WANG Zongyi, HAN Zhaozhou. The choice of GPD estimation and risk measure in POT model[J]. Mathematics in Practice and Theory, 2010, 40(5): 66-71. (in Chinese) -