Fracture properties of rubber concrete under three-point bending
-
摘要: 通过橡胶混凝土三点弯曲梁断裂试验,测取橡胶混凝土的荷载、挠度和裂缝开口位移值,并绘制荷载-挠度曲线和荷载-裂缝开口位移曲线;根据《水工混凝土断裂试验规程》和ASTM规范计算断裂韧度与断裂能,研究不同橡胶掺量对混凝土断裂性能的影响,以及声发射累积能量和断裂能之间的关系,并对比分析两部规范中给出的不同断裂韧度计算公式的计算结果。研究表明:掺入橡胶后混凝土能承受的最大荷载降低,起裂断裂韧度、失稳断裂韧度、断裂韧度、断裂能和声发射累积能量均降低;混凝土梁的有效裂缝长度和最大挠度在橡胶掺量为10%时最小,在橡胶掺量为20%和30%时增大;延性指数随橡胶掺量的增加逐渐增大,最大提高了41%;通过拟合混凝土的断裂能和声发射累积能量曲线,可得出
$y=a+b{{\rm{e}}}^{cx}$ 形式的经验式。掺入橡胶后混凝土韧性和变形能力提高,脆性得到了改善,并可利用经验式推断达到某一声发射能量值时混凝土的破坏程度。Abstract: Through the rubber concrete three-point bending beam fracture test, the load, deflection and crack opening displacement values of the rubber concrete are measured, and the load-deflection curve and the load-crack opening displacement curve are drawn; according to "Hydraulic Concrete Fracture Test Regulations" and ASTM specifications, the fracture toughness and fracture energy are calculated, and the effect of different rubber contents on the fracture performance of concrete and the relationship between the cumulative energy of acoustic emission and fracture energy are studied; and the calculation results of the different fracture toughness calculation formulas given in the two codes are compared and analyzed. The test results show that the maximum load that the concrete can withstand after mixing with rubber is reduced, and the crack initiation toughness, unstable fracture toughness, fracture toughness, fracture energy and cumulative energy of acoustic emission are all reduced; the effective crack length and maximum deflection are the smallest when the rubber content is 10%, and increase when the rubber content is 20% and 30%; the ductility index gradually increases with the increase of the rubber content, and the maximum increase is 41%; and by fitting the fracture energy of concrete harmonic emission cumulative energy curve, the empirical formula in the form of$y=a+b{{\rm{e}}}^{cx}$ can be obtained. The ductility and deformability of the concrete are improved with the incorporation of rubber, the brittleness is improved and an empirical formula can be used to deduce the degree of damage to the concrete when a certain value of emitted energy is reached. -
表 1 每立方米混凝土材料组成
Table 1. Material composition per cubic metre of concrete
橡胶替代比例/% 水泥/kg 粉煤灰/kg 硅灰/kg 水/kg 减水剂/kg 橡胶+砂(总质量1 018 kg) 石/kg 0 385 139 26 200 7.5 橡胶0+砂100% 800 10 385 139 26 200 7.5 橡胶10%+砂90% 800 20 385 139 26 200 7.5 橡胶20%+砂80% 800 30 385 139 26 200 7.5 橡胶30%+砂70% 800 表 2 橡胶混凝土断裂参数
Table 2. Fracture parameters of rubber concrete
橡胶替代比例/% Pmax/kN E/GPa ac/m ${k_\beta } $ ${K}_{\mathrm{I}\mathrm{C} }^{\mathrm{i}\mathrm{n}\mathrm{i} }/(\mathrm{M}\mathrm{P}\mathrm{a}\cdot {\mathrm{m} }^{\frac{1}{2}})$ ${K}_{\mathrm{I}\mathrm{C} }^{\mathrm{u}\mathrm{n} }/(\mathrm{M}\mathrm{P}\mathrm{a}\cdot {\mathrm{m} }^{\frac{1}{2} })$ ${K}_{\mathrm{I}\mathrm{C} }/(\mathrm{M}\mathrm{P}\mathrm{a}\cdot {\mathrm{m} }^{\frac{1}{2} })$ 0 6.932 38.81 0.038 0.991 0.312 1.925 0.869 7.301 50.00 0.044 0.297 2.184 0.916 7.160 48.01 0.046 0.304 2.179 0.898 7.131* 45.60* 0.043* 0.304* 2.096* 0.894* 10 6.084 30.22 0.042 0.991 0.274 1.770 0.763 5.723 39.00 0.042 0.266 1.675 0.718 5.780 42.24 0.040 0.235 1.636 0.725 5.862* 37.15* 0.041* 0.258* 1.694* 0.735* 20 4.889 24.81 0.041 0.991 0.188 1.417 0.613 4.556 27.50 0.043 0.227 1.339 0.571 4.965 30.98 0.041 0.257 1.432 0.623 4.803* 27.76* 0.042* 0.224* 1.396* 0.602* 30 4.321 25.15 0.045 0.991 0.185 1.31 0.542 3.975 26.02 0.050 0.183 1.263 0.499 4.284 30.66 0.048 0.173 1.335 0.537 4.193* 27.27* 0.048* 0.180* 1.303* 0.526* 注:带*的数值为对应组的平均值。 表 3 橡胶混凝土断裂能
Table 3. Fracture energy of rubber concrete
橡胶替代
比例/%试件重量/
kNPmax/
kNδmax/
mm断裂能/
(N·m−1)延性指数/
m−10 0.088 2 6.932 0.508 147.8 0.018 8 7.301 0.479 171.8 0.023 5 7.160 0.625 209.9 0.029 3 7.131* 0.537* 176.6* 0.023 9* 10 0.087 2 6.084 0.645 185.8 0.035 7 5.723 0.430 131.3 0.025 2 5.780 0.456 125.3 0.024 7 5.862* 0.510* 147.5* 0.028 5* 20 0.853 0 4.889 0.553 131.4 0.031 2 4.556 0.621 117.9 0.031 3 4.965 0.522 121.8 0.029 0 4.803* 0.562* 123.7* 0.030 5* 30 0.081 3 4.321 0.569 115.9 0.031 8 3.975 0.696 129.3 0.040 0 4.284 0.544 104.2 0.029 4 4.193* 0.603* 143.3* 0.033 7* 注:带*的数值为对应组的平均值。 -
[1] HAN Q H, YANG G, XU J. Experimental study on the relationship between acoustic emission energy and fracture energy of crumb rubber concrete[J]. Structural Control & Health Monitoring, 2018, 25(10): e2240. [2] KHALIL E, ABD-ELMOHSEN M, ANWAR A M. Impact resistance of rubberized self-compacting concrete[J]. Water Science, 2015, 29(1): 45-53. doi: 10.1016/j.wsj.2014.12.002 [3] 马一平, 刘晓勇, 谈至明, 等. 改性橡胶混凝土的物理力学性能[J]. 建筑材料学报,2009,12(4):379-383. (MA Yiping, LIU Xiaoyong, TAN Zhiming, et al. Research on physical and mechanical properties of cement concrete mixed with modified rubber particles[J]. Journal of Building Materials, 2009, 12(4): 379-383. (in Chinese) doi: 10.3969/j.issn.1007-9629.2009.04.001 [4] YUNG W H, YUNG L C, HUA L H. A study of the durability properties of waste tire rubber applied to self-compacting concrete[J]. Construction and Building Materials, 2013, 41: 665-672. doi: 10.1016/j.conbuildmat.2012.11.019 [5] 曹国瑞, 王娟, 卿龙邦, 等. 橡胶混凝土断裂性能试验研究[J]. 土木建筑与环境工程,2018,40(6):91-97. (CAO Guorui, WANG Juan, QING Longbang, et al. Experimental study on the fracture characteristics of crumb rubber concrete[J]. Journal of Civil, Architectural & Environmental Engineering, 2018, 40(6): 91-97. (in Chinese) [6] 罗素蓉, 陈伟妹, 王雪芳. 橡胶自密实混凝土断裂性能试验研究[J]. 水利学报,2015,46(2):217-222. (LUO Surong, CHEN Weimei, WANG Xuefang. Fracture properties of rubberized self-compacting concrete[J]. Journal of Hydraulic Engineering, 2015, 46(2): 217-222. (in Chinese) [7] WANG C, ZHANG Y M, MA A B. Investigation into the fatigue damage process of rubberized concrete and plain concrete by AE analysis[J]. Journal of Materials in Civil Engineering, 2011, 23(7): 953-960. doi: 10.1061/(ASCE)MT.1943-5533.0000257 [8] CARPINTERI A, LACIDOGNA G, PUZZI S. From criticality to final collapse: evolution of the “b-value” from 1.5 to 1.0[J]. Chaos, Solitons & Fractals, 2009, 41(2): 843-853. [9] LANDIS E N, BAILLON L. Experiments to relate acoustic emission energy to fracture energy of concrete[J]. Journal of Engineering Mechanics, 2002, 128(6): 698-702. doi: 10.1061/(ASCE)0733-9399(2002)128:6(698) [10] XU J, FU Z W, HAN Q H, et al. Fracture monitoring and damage pattern recognition for carbon nanotube-crumb rubber mortar using acoustic emission techniques[J]. Structural Control & Health Monitoring, 2019, 26(10): e2422. [11] JENQ Y, SHAH S P. Two parameter fracture model for concrete[J]. Journal of Engineering Mechanics, 1985, 111(10): 1227-1241. doi: 10.1061/(ASCE)0733-9399(1985)111:10(1227) [12] BAŽANT Z P, KAZEMI M T. Determination of fracture energy, process zone longth and brittleness number from size effect, with application to rock and conerete[J]. International Journal of Fracture, 1990, 44(2): 111-131. doi: 10.1007/BF00047063 [13] HILLERBORG A, MODÉER M, PETERSSON P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6): 773-781. doi: 10.1016/0008-8846(76)90007-7 [14] 徐世烺, 赵艳华, 吴智敏, 等. 楔入劈拉法研究混凝土断裂能[J]. 水力发电学报,2003(4):15-22. (XU Shilang, ZHAO Yanhua, WU Zhimin, et al. The experimental study on the fracture energy of concrete using wedge splitting specimens[J]. Journal of Hydroelectric Engineering, 2003(4): 15-22. (in Chinese) doi: 10.3969/j.issn.1003-1243.2003.04.003 [15] 赵艳华, 徐世烺, 吴智敏. 混凝土结构裂缝扩展的双G准则[J]. 土木工程学报,2004,37(10):13-18, 51, 91. (ZHAO Yanhua, XU Shilang, WU Zhimin. A dual-G criterion for crack propagation in concrete structures[J]. China Civil Engineering Journal, 2004, 37(10): 13-18, 51, 91. (in Chinese) doi: 10.3321/j.issn:1000-131X.2004.10.002 [16] CARPINTERI A, LACIDOGNA G, CORRADO M, et al. Cracking and crackling in concrete-like materials: a dynamic energy balance[J]. Engineering Fracture Mechanics, 2016, 155: 130-144. doi: 10.1016/j.engfracmech.2016.01.013 [17] 马海峰, 袁江, 韩云阁, 等. 废旧橡胶改性水泥基材料的研究进展[J]. 混凝土与水泥制品,2012(3):71-75. (MA Haifeng, YUAN Jiang, HAN Yunge, et al. Research development of cement-based materials containing scrap rubber[J]. China Concerete and Cement Products, 2012(3): 71-75. (in Chinese) doi: 10.3969/j.issn.1000-4637.2012.03.019 [18] 杨春峰, 杨敏, 叶文超. 改性方式对橡胶混凝土力学性能的影响[J]. 沈阳大学学报(自然科学版),2012,24(3):78-81. (YANG Chunfeng, YANG Min, YE Wenchao. Influence of modification to mechanical properties of waste rubber concrete[J]. Journal of Shenyang University (Natural Science), 2012, 24(3): 78-81. (in Chinese) [19] 中华人民共和国国家发展和改革委员会. 水工混凝土断裂试验规程: DL/T 5332―2005[S]. 北京: 中国电力出版社, 2006. National Development and Reform Commission. Norm for fracture test of hydraulic concrete: DL/T 5332―2005[S]. Beijing: China Electric Power Press, 2006. (in Chinese) [20] GUINEA G V, PASTOR J Y, PLANAS J, et al. Stress intensity factor, compliance and CMOD for a general three-point-bend beam[J]. International Journal of Fracture, 1998, 89(2): 103-116. doi: 10.1023/A:1007498132504 [21] RILEM. FMC 1 Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams[J]. Materials and Structures, 1985, 18: 287-290. doi: https://doi.org/10.1007/BF02472918 [22] SAGAR R V, PRASAD B K R. A review of recent developments in parametric based acoustic emission techniques applied to concrete structures[J]. Nondestructive Testing and Evaluation, 2012, 27(1): 47-68. doi: 10.1080/10589759.2011.589029 [23] 范向前, 胡少伟, 陆俊. 基于声发射信号表征混凝土断裂过程的异常现象[J]. 水利水运工程学报,2014(3):26-31. (FAN Xiangqian, HU Shaowei, LU Jun. Experimental analysis of abnormal phenomena in concrete fracture process based on acoustic emission signals characterization[J]. Hydro-Science and Engineering, 2014(3): 26-31. (in Chinese) doi: 10.3969/j.issn.1009-640X.2014.03.004 [24] 胡少伟, 陆俊, 范向前. 混凝土断裂试验中的声发射特性研究[J]. 水力发电学报,2011,30(6):16-19, 29. (HU Shaowei, LU Jun, FAN Xiangqian. Study on acoustic emission technique for normal concrete fracture test[J]. Journal of Hydroelectric Engineering, 2011, 30(6): 16-19, 29. (in Chinese) [25] LU Y Y, LI Z J. Study of the relationship between concrete fracture energy and AE signal energy under uniaxial compression[J]. Journal of Materials in Civil Engineering, 2012, 24(5): 538-547. doi: 10.1061/(ASCE)MT.1943-5533.0000418 [26] LACIDOGNA G, PIANA G, CARPINTERI A. Acoustic emission and modal frequency variation in concrete specimens under four-point bending[J]. Applied Sciences, 2017, 7(4): 339. doi: 10.3390/app7040339 -