System dynamics model-based water demand prediction under changing environment with consideration of physical mechanism
-
摘要: 随着气候变化与人类活动作用的加剧,流域水资源受变化环境的影响愈加显著。研究变化环境下的流域水资源系统变化特征及需水预测对支撑流域水资源管理与合理配置具有重要的指导意义。基于系统动力学原理,耦合了考虑物理机制的需水预测方法,建立水资源系统模型,以黄河流域为例,分析了多因子驱动及多要素胁迫作用下黄河流域水资源系统变化特征,采用MPI气候模式预估的未来气温、降水结果及未来流域5种不同的经济社会发展情形,预测了黄河流域2017—2030年的水资源供需演变趋势。结果表明:①黄河流域的生活需水量随着流域人口及人均用水需求的增加不断增长。随着产业结构调整,工业需水量呈现缓慢减少态势,生态及三产需水量逐年增加,农业灌溉需水量呈下降趋势;②在加强流域水资源管理力度、增加节水技术投资的前提下,保障流域经济、社会协调发展,注重发展经济的同时兼顾流域生态环境保护,满足黄河流域下一阶段的经济社会可持续发展的要求;③为保障黄河流域水资源可持续发展,实现黄河流域生态保护和高质量发展,需要调整流域水资源管理策略,提高节水程度,促进流域产业结构优化。Abstract: With the intensification of climate change and human activities, water resources in the basin are more and more affected by the changing environment. It is of great significance to study the change characteristics of watershed water resources system and water demand prediction in the changing environment to support the management and rational allocation of watershed water resources. Based on the principle of system dynamics, coupled with the water demand prediction method considering physical mechanism, this article establishes the model of water resources system. Taking the Yellow River basin as an example, this paper analyzes the change characteristics of water resources system in the Yellow River basin under the action of multi-factor driving and multi-element stress, and predicts the evolution trend of water resources supply and demand in the Yellow River basin from 2017 to 2030 according to five different economic and social development situations in the future basin and the predicted future temperature and precipitation results using MPI climate model. The results show that: (1) The domestic water demand of the Yellow River basin increases continuously with the increase of the population and the per capita water demand of the basin. With the adjustment of industrial structure, the water demand for industry shows a trend of slow decrease, while the water demand for ecology and production increases year by year. (2) On the premise of strengthening the river basin water resources management and increasing the investment in water-saving technology, we should ensure the coordinated development of the basin economy and society, pay attention to the development of the economy while giving consideration to ecological environment protection in the basin, and meet the requirements of sustainable economic and social development in the next stage of the Yellow River basin. (3) In order to ensure the sustainable development of water resources in the Yellow River basin, and realize the ecological protection and high-quality development of the Yellow River basin, it is necessary to adjust the strategies of water resources management in the basin, improve the degree of water-saving, and promote the optimization of the industrial structure of the basin.
-
Key words:
- system dynamics /
- physical mechanism /
- water demand forecast /
- Yellow River basin
-
表 1 SD模型主要参数方程
Table 1. Main parametric equations of SD model
子系统 参 数 方 程 人口 城镇居民生活用水定额/(L/(d×人)) (高温天数/365+1/2×(1−高温天数/365))×(57+(0.5+1/3.1416×
ARCTAN((人均GDP−3) /5))×76−2×居民水价)+烹饪冲厕用水定额人口变化量/(万人/a) 总人口数量×人口变化率/1000 城镇人口数量/万人 总人口数量×城镇化率 生活用水量/亿m3 农村居民生活用水量+城镇居民生活用水量 经济 GDP总量/亿元 INTEG(GDP增加量,13588.5) GDP增长率/% (2006,0.125),(2012,0.084),(2015,0.065) 万元工业增加值用水量/ m3 EXP(18.0546−3.3189×LN(工业水重复利用率)−0.16231×LN(工业水价)+0.1451×LN(气温)) 农业灌溉需水量/亿m3 (果林净灌溉需水量+农田净灌溉需水量)/灌溉水利用系数 生态 生态需水量/亿m3 城市绿地用水+河湖补水量+环卫用水+生态林草用水 供需 供水量/亿m3 调水量+中水再生利用量+地下水供水量+地表水供水量 总需水量/亿m3 生活需水量+生态需水量+工业需水量+三产需水量+农业需水量 供需缺口/亿m3 IF THEN ELSE(总需水量−总供水量>=0, 总需水量−总供水量, 0) 表 2 2006—2017年模型仿真结果误差统计
Table 2. Error statistics of model simulation results from 2006 to 2017
指标 数据性质 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 农田灌溉需水量 历史值/亿m3 346.2 324.9 317.8 323.0 327.0 330.4 321.5 336.4 330.8 328.5 321.4 317.7 仿真值/亿m3 324.5 293.4 310.6 316.2 287.3 321.8 277.3 305.0 287.6 330.5 303.4 315.8 误差/% −6.26 −9.69 −2.27 −2.11 −12.13 −2.60 −13.74 −9.33 −13.07 0.62 −5.60 −0.61 生活需水量 历史值/亿m3 31.1 29.7 32.2 34.7 36.2 38.9 38.4 37.7 38.6 39.4 40.3 41.8 仿真值/亿m3 29.0 29.8 30.3 31.9 32.7 33.4 34.3 36.6 36.4 37.6 38.5 38.9 误差/% −6.71 0.13 −6.11 −8.12 −9.77 −14.12 −10.62 −2.71 −5.71 −4.69 −4.38 −6.98 表 3 模型灵敏度分析结果
Table 3. Sensitivity analysis results of model
指标 GDP增长率 人口增长率 再生水利用率 城市绿地面积增长率 灌溉面积变化率 三产需水量 0.5764 0 0.0011 0.0004 0.0007 农业需水量 0.0003 0 0 0 0.0268 工业需水量 0.5764 0.0001 0.0011 0.0004 0.0007 总供水量 0.0090 0.0001 0.0183 0 0 生态环境需水 0.0028 0 0.0007 0.3629 0.0004 生活需水量 0.0168 0.0257 0.0001 0 0.0001 平均灵敏度 0.1970 0.0043 0.0035 0.0606 0.0048 表 4 不同情景下黄河流域水资源系统的主要参数
Table 4. Main parameters of water resources system in the Yellow River basin under different scenarios
情景 年份 GDP增长率 工业水重复利用率/% 人口增长率 城镇化率 城市绿地面积增长率 灌溉水利用系数 现状延续情景 2020 0.058 0 72.50 0.0035 0.540 0.060 0.525 0 2025 0.049 0 77.25 0.0035 0.585 0.060 0.560 0 2030 0.049 0 82.00 0.0035 0.630 0.060 0.580 0 情景二 2020 0.0551 75.76 0.0033 0.540 0.069 0.536 0 2025 0.0466 80.73 0.0033 0.585 0.069 0.580 5 2030 0.0466 85.12 0.0033 0.630 0.069 0.610 0 情景三 2020 0.0522 79.02 0.0030 0.540 0.063 0.5674 2025 0.0441 84.20 0.0030 0.585 0.063 0.616 8 2030 0.0441 88.40 0.0030 0.630 0.063 0.650 0 情景四 2020 0.0551 76.49 0.0032 0.550 0.066 0.550 0 2025 0.0466 81.50 0.0032 0.600 0.066 0.600 0 2030 0.0466 86.10 0.0032 0.650 0.066 0.630 0 情景五 2020 0.0638 74.68 0.0037 0.550 0.063 0.530 0 2025 0.0539 79.57 0.0037 0.600 0.063 0.575 0 2030 0.0539 85.12 0.0037 0.650 0.063 0.600 0 表 5 2030年黄河流域需水情景比较
Table 5. Comparison of water demand in the Yellow River basin in 2030
需水类型 现状延续情形 情景二 情景三 情景四 情景五 黄河综合规划 生活 生活需水量/亿m3 48.06 48.45 48.26 50.00 50.98 48.89 农业 农田灌溉需水量/亿m3 305.40 290.40 272.60 281.20 295.30 312.50 果林需水量/亿m3 21.27 20.22 18.98 19.58 20.56 16.80 牲畜需水量/亿m3 7.25 7.25 7.25 7.25 7.25 11.25 鱼塘补水量/亿m3 6.45 6.45 6.45 6.45 6.45 6.45 汇总/亿m3 340.40 324.40 305.20 314.50 329.50 347.10 生产 工业需水量/亿m3 115.10 98.80 84.00 94.50 106.30 110.40 建筑业及第三产业需水量/亿m3 13.71 13.96 13.66 14.52 16.17 16.30 生态 生态需水量/亿m3 37.93 41.08 39.12 40.08 38.97 24.65 总需水/亿m3 555.20 526.60 490.30 513.60 541.90 547.30 -
[1] 夏军, 翟金良, 占车生. 我国水资源研究与发展的若干思考[J]. 地球科学进展,2011,26(9):905-915. (XIA Jun, ZHAI Jinliang, ZHAN Chesheng. Some reflections on the research and of development water resources in China[J]. Advances in Earth Science, 2011, 26(9): 905-915. (in Chinese) [2] 张建云, 刘九夫, 金君良. 关于智慧水利的认识与思考[J]. 水利水运工程学报,2019(6):1-7. (ZHANG Jianyun, LIU Jiufu, JIN Junliang. Understanding and thinking of smart water conservancy[J]. Hydro-Science and Engineering, 2019(6): 1-7. (in Chinese) [3] 刘晶,刘翠善,李潇,等. 中国水-能源-粮食关联系统协同安全评价[J]. 水利水运工程学报,2020(4):24-32. (LIU Jing, LIU Cuishan, LI Xiao, et al. Security evaluation of water-energy-food nexus system in China[J]. Hydro-Science and Engineering, 2020(4): 24-32. (in Chinese) [4] SHARAWAT I, DAHIYA R, DAHIYA R P, et al. Policy options for managing the water resources in rapidly expanding cities: a system dynamics approach[J]. Sustainable Water Resources Management, 2019, 5(3): 1201-1215. doi: 10.1007/s40899-018-0296-7 [5] BEKCHANOV M, SOOD A, PINTO A, et al. Systematic review of water-economy modeling applications[J]. Journal of Water Resources Planning and Management, 2017, 143(8): 04017037. doi: 10.1061/(ASCE)WR.1943-5452.0000793 [6] 王喜峰, 周祖昊, 贾仰文, 等. 水资源演变研究现状及进展[J]. 水电能源科学,2010,28(8):20-23. (WANG Xifeng, ZHOU Zuhao, JIA Yangwen, et al. Advances in water resources evolution research and future prospects[J]. Water Resources and Power, 2010, 28(8): 20-23. (in Chinese) [7] 刘晶, 鲍振鑫, 刘翠善, 等. 近20年中国水资源及用水量变化规律与成因分析[J]. 水利水运工程学报,2019(4):31-41. (LIU Jing, BAO Zhenxin, LIU Cuishan, et al. Change law and cause analysis of water resources and water consumption in China in past 20 years[J]. Hydro-Science and Engineering, 2019(4): 31-41. (in Chinese) [8] 管晓祥, 金君良, 黄爱明, 等. 黄河流域典型流域水文气象变化与径流过程模拟[J]. 水利水运工程学报,2019(5):36-43. (GUAN Xiaoxiang, JIN Junliang, HUANG Aiming, et al. Typical hydro-meteorological changes and runoff process simulation in Yellow River basin[J]. Hydro-Science and Engineering, 2019(5): 36-43. (in Chinese) [9] 朱洁, 王烜, 李春晖, 等. 系统动力学方法在水资源系统中的研究进展述评[J]. 水资源与水工程学报,2015,26(2):32-39. (ZHU Jie, WANG Xuan, LI Chunhui, et al. Review on method of system dynamics applied in water resources system[J]. Journal of Water Resources & Water Engineering, 2015, 26(2): 32-39. (in Chinese) [10] 李韧, 聂春霞. 基于系统动力学的乌鲁木齐市水资源配置方案优选[J]. 中国农村水利水电,2019(10):99-104. (LI Ren, NIE Chunxia. Optimization of water resources allocation scheme based on system dynamics in Urumqi[J]. China Rural Water and Hydropower, 2019(10): 99-104. (in Chinese) [11] 金菊良, 陈梦璐, 郦建强, 等. 水资源承载力预警研究进展[J]. 水科学进展,2018,29(4):583-596. (JIN Juliang, CHEN Menglu, LI Jianqiang, et al. Advance in early warning of water resources carrying capacity[J]. Advances in Water Science, 2018, 29(4): 583-596. (in Chinese) [12] 李福臻, 曹升乐, 刘阳, 等. 区域水资源预警方法研究及其应用—以济南市为例[J]. 中国农村水利水电,2020(4):65-70. (LI Fuzhen, CAO Shengle, LIU Yang, et al. The study and application of regional water resources early warning method—take Jinan city as an example[J]. China Rural Water and Hydropower, 2020(4): 65-70. (in Chinese) [13] HOEKEMA D J, SRIDHAR V. A system dynamics model for conjunctive management of water resources in the Snake River Basin[J]. American Water Resources Association, 2013, 49(6): 1327-1350. doi: 10.1111/jawr.12092 [14] 张腾, 张震, 徐艳. 基于SD模型的海淀区水资源供需平衡模拟与仿真研究[J]. 中国农业资源与区划,2016,37(2):29-36. (ZHANG Teng, ZHANG Zhen, XU Yan. Simulation and emulation on the equilibrium of supply and demand of water resources in Haidian district based on the SD model[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(2): 29-36. (in Chinese) [15] 粟晓玲, 谢娟, 周正弘. 基于SD变化环境下农业水资源供需平衡模拟[J]. 排灌机械工程学报,2020,38(3):285-291. (SU Xiaoling, XIE Juan, ZHOU Zhenghong. System dynamics model-based simulation of agricultural water resources supply and demand balance in changing environments[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(3): 285-291. (in Chinese) [16] 刘家宏, 王建华, 李海红, 等. 城市生活用水指标计算模型[J]. 水利学报,2013,44(10):1158-1164. (LIU Jiahong, WANG Jianhua, LI Haihong, et al. A mathematic model for rational domestic water demand considering climate and economic development factors[J]. Journal of Hydraulic Engineering, 2013, 44(10): 1158-1164. (in Chinese) [17] 何霄嘉. 黄河水资源适应气候变化的策略研究[J]. 人民黄河,2017,39(8):44-48. (HE Xiaojia. Study on strategies of Yellow River water resources adapting to climate change[J]. Yellow River, 2017, 39(8): 44-48. (in Chinese) [18] 郭磊, 黄本胜, 邱静, 等. 基于趋势及回归分析的珠三角城市群需水预测[J]. 水利水电技术,2017,48(1):23-28. (GUO Lei, HUANG Bensheng, QIU Jing, et al. Trend and regression analysis-based water demand prediction of Pearl River Delta urban agglomeration[J]. Water Resources and Hydropower Engineering, 2017, 48(1): 23-28. (in Chinese) [19] 贺丽媛, 夏军, 张利平. 水资源需求预测的研究现状及发展趋势[J]. 长江科学院院报,2007,24(1):61-64. (HE Liyuan, XIA Jun, ZHANG Liping. Present research and development trend on water resources demand forecast[J]. Journal of Yangtze River Scientific Research Institute, 2007, 24(1): 61-64. (in Chinese) [20] 赵阳, 孙杰肖, 韩会玲. 灰色预测GM(1, 1)模型在张家口市需水量预测中的应用[J]. 水电能源科学,2014,32(7):40-43. (ZHAO Yang, SUN Jiexiao, HAN Huiling. Application of grey prediction GM(1, 1) model in Zhangjiakou water demand forecasting[J]. Water Resources and Power, 2014, 32(7): 40-43. (in Chinese) [21] 郭强, 李文竹, 刘心. 基于贝叶斯BP神经网络的区间需水预测方法[J]. 人民黄河,2018,40(12):76-80. (GUO Qiang, LI Wenzhu, LIU Xin. Interval water demand prediction method based on Bayesian BP network[J]. Yellow River, 2018, 40(12): 76-80. (in Chinese) [22] 唐雅君, 魏晓妹. 变化环境下宝鸡峡灌区农业需水量的合理确定[J]. 水资源与水工程学报,2018,29(3):254-260. (TANG Yajun, WEI Xiaomei. Reasonable determination of agricultural water demand in Baojixia irrigation district under changing environment[J]. Journal of Water Resources & Water Engineering, 2018, 29(3): 254-260. (in Chinese) [23] 邹庆荣, 刘秀丽. 我国工业需水量预测模型研究及应用[J]. 数学的实践与认识,2015,45(13):96-103. (ZOU Qingrong, LIU Xiuli. Research on the industrial water demand forecasting models and its application in China[J]. Mathematics in Practice and Theory, 2015, 45(13): 96-103. (in Chinese) -