Relationship between internal relative humidity and pore water saturation of dam concrete
-
摘要: 为了研究大坝混凝土内部相对湿度100%和孔隙水饱和度100%是否具有唯一对应关系,成型了不同粉煤灰掺量(0、35%)的大坝二级配混凝土试件,通过温湿度传感器监测获得混凝土内部相对湿度,结合称重试验计算获得混凝土孔隙水饱和度。结果表明:绝湿状态下,水胶比0.5的大坝混凝土内部相对湿度始终为100%,然而对应的孔隙水饱和度并不一定为100%,不掺粉煤灰与掺35%粉煤灰的混凝土的孔隙水饱和度分别为85%~89%和73%~76%,即大坝混凝土孔隙水饱和度100%对应于内部相对湿度100%,而内部相对湿度100%不是唯一对应孔隙水饱和度100%。在绝湿状态下,水胶比0.5掺35%粉煤灰的混凝土的孔隙水饱和度要小于不掺粉煤灰的混凝土。Abstract: In order to investigate whether there is a unique correspondence between the relative humidity of 100% inside dam concrete and the pore water saturation of 100%, dam secondary concrete specimens with a water-binder ratio of 0.5 and different fly ash contents (0, 35%) were formed. The relative humidity inside the concrete specimens was monitored by temperature and humidity sensors and the pore water saturation of the concrete was calculated using a weighing test. The results show that the relative humidity inside the dam concrete with a water-binder ratio of 0.5 was kept at 100% in the insulation humidity state; however, the corresponding pore water saturation was not necessarily 100%; the pore water saturation of concrete without fly ash and with 35% fly ash was 85%~89% and 73%~76%, respectively. This indicates that 100% of the pore water saturation of the dam concrete corresponds to 100% of the internal relative humidity, and the internal relative humidity of 100% is not the only relative humidity corresponding to the pore water saturation of 100%. In the insulation humidity state, for concrete with a water-binder ratio of 0.5, the pore water saturation of concrete with 35% fly ash is less than that of concrete without fly ash.
-
Key words:
- dam concrete /
- relative humidity /
- pore water saturation /
- fly ash content
-
表 1 混凝土配合比
Table 1. Mix proportions of concrete
水胶比 粉煤灰掺量/% 单位体积用量/(kg·m−3) 减水剂 水泥 水 粉煤灰 砂子 石子 0.5 0 1.716 264.0 132 0 761.26 1 477.74 35 1.716 171.6 132 92.4 761.26 1 477.74 表 2 大坝混凝土试验方案
Table 2. Test schedule of dam concrete
试件编号 水胶比 粉煤灰掺量 试件尺寸 养护状态 养护龄期/d 试验 1#、2# 0.5 0 150 mm×150 mm×150 mm (20±2)℃绝湿 27 湿度监测30 d 3#、4# 浸水30 d 5#、6# 35% 湿度监测30 d 7#、8# 浸水30 d 表 3 试验结果
Table 3. Test results
编号 水胶比 粉煤灰掺量/% 养护 第28 d测湿/% 测湿/浸水30 d 初始质量/g 烘干质量/g 含水率/% 平均含水率/% 1# 0.5 0 绝湿养护27 d 100 100% 19.15 17.85 7.28 7.48 2# 0.5 0 100 100% 24.99 23.21 7.67 3# 0.5 0 100 浸水饱和 18.91 17.41 8.62 8.34 4# 0.5 0 100 浸水饱和 38.46 35.59 8.06 5# 0.5 35 100 100% 26.47 24.56 7.78 7.94 6# 0.5 35 100 100% 29.49 27.28 8.10 7# 0.5 35 100 浸水饱和 13.74 12.41 10.72 10.20 8# 0.5 35 100 浸水饱和 23.35 21.29 9.68 表 4 混凝土孔隙水饱和度与内部相对湿度
Table 4. Concrete pore water saturation and internal relative humidity
单位:% 编号 水胶比 粉煤灰掺量 含水率 孔隙水饱和度 内部相对湿度 1# 0.5 0 7.28 85 100 2# 0.5 0 7.67 89 100 3# 0.5 0 8.62 100 100 4# 0.5 0 8.06 94 100 5# 0.5 35 7.78 73 100 6# 0.5 35 8.10 76 100 7# 0.5 35 10.72 100 100 8# 0.5 35 9.68 90 100 -
[1] 张庆章, 顾祥林, 张伟平, 等. 混凝土中毛细压力-饱和度关系模型[J]. 同济大学学报(自然科学版),2012,40(12):1753-1759. (ZHANG Qingzhang, GU Xianglin, ZHANG Weiping, et al. Model on capillary pressure-saturation relationship for concrete[J]. Journal of Tongji University (Natural Science), 2012, 40(12): 1753-1759. (in Chinese) [2] 杨林. 非饱和混凝土水分与氯离子传输行为研究[D]. 南京: 东南大学, 2017. YANG Lin. Investigation of moisture and chloride ion transport in unsaturated concrete[D]. Nanjing: Southeast University, 2017. (in Chinese) [3] PRUCKNER F. Relative Luftfeuchtemessung zur erfassung der wassersättigung von beton[J]. Beton-und Stahlbetonbau, 2013, 108(12): 865-874. doi: 10.1002/best.201300028 [4] ISHIDA T, MAEKAWA K, KISHI T. Enhanced modeling of moisture equilibrium and transport in cementitious materials under arbitrary temperature and relative humidity history[J]. Cement and Concrete Research, 2007, 37(4): 565-578. doi: 10.1016/j.cemconres.2006.11.015 [5] BAROGHEL-BOUNY V. Water vapour sorption experiments on hardened cementitious materials: part I: essential tool for analysis of hygral behaviour and its relation to pore structure[J]. Cement and Concrete Research, 2007, 37(3): 414-437. doi: 10.1016/j.cemconres.2006.11.019 [6] 姬永生, 董亚男, 袁迎曙, 等. 混凝土孔隙水饱和度的机理分析[J]. 四川建筑科学研究,2010,36(2):215-218, 223. (JI Yongsheng, DONG Ya’nan, YUAN Yingshu, et al. Mechanism analysis on degree of pore saturation in concrete[J]. Sichuan Building Science, 2010, 36(2): 215-218, 223. (in Chinese) [7] JIANG J H, YUAN Y S. Relationship of moisture content with temperature and relative humidity in concrete[J]. Magazine of Concrete Research, 2013, 65(11): 685-692. doi: 10.1680/macr.12.00190 [8] 鲁彩凤, 张艳龙, 姬永生, 等. 基于微环境温湿度的混凝土孔隙水饱和度预计[J]. 中南大学学报(自然科学版),2017,48(3):761-768. (LU Caifeng, ZHANG Yanlong, JI Yongsheng, et al. Prediction of pore water saturation based on micro-environment temperature and relative humidity in concrete[J]. Journal of Central South University (Science and Technology), 2017, 48(3): 761-768. (in Chinese) [9] 刘钰. 混凝土内部湿度迁移及环境湿度对水工混凝土力学性能影响[D]. 宜昌: 三峡大学, 2018. LIU Yu. Internal humidity migration of concrete and environmental humidity influence on mechanical properties of hydraulic concrete[D]. Yichang: China Three Gorges University, 2018. (in Chinese) [10] 张国辉, 李肖杭, 魏海. 水环境下的混凝土湿度影响因素试验[J]. 水利水电科技进展,2019,39(6):51-55. (ZHANG Guohui, LI Xiaohang, WEI Hai. Experimental study on concrete humidity under water environment[J]. Advances in Science and Technology of Water Resources, 2019, 39(6): 51-55. (in Chinese) [11] ALAM M N, BHUIYAN R H, DOUGAL R A, et al. Concrete moisture content measurement using interdigitated near-field sensors[J]. IEEE Sensors Journal, 2010, 10(7): 1243-1248. doi: 10.1109/JSEN.2010.2040175 [12] LIU B D, LV W J, LI L, et al. Effect of moisture content on static compressive elasticity modulus of concrete[J]. Construction and Building Materials, 2014, 69: 133-142. doi: 10.1016/j.conbuildmat.2014.06.094 [13] ALZEYADI A, YU T. Moisture determination of concrete panel using SAR imaging and the K-R-I transform[J]. Construction and Building Materials, 2018, 184: 351-360. doi: 10.1016/j.conbuildmat.2018.06.209 [14] 程宝娟, 王立成, 鲍玖文, 等. 养护条件对混凝土毛细吸水性能的影响[J]. 水利水运工程学报,2016(6):76-82. (CHENG Baojuan, WANG Licheng, BAO Jiuwen, et al. Experimental studies on influences of curing conditions on capillary absorption of concrete[J]. Hydro-Science and Engineering, 2016(6): 76-82. (in Chinese) [15] KEARSLEY E P, WAINWRIGHT P J. Porosity and permeability of foamed concrete[J]. Cement and Concrete Research, 2001, 31(5): 805-812. doi: 10.1016/S0008-8846(01)00490-2 [16] UYGUNOĞLU T, TOPCU I B, GENCEL O, et al. The effect of fly ash content and types of aggregates on the properties of pre-fabricated concrete interlocking blocks (PCIBs)[J]. Construction and Building Materials, 2012, 30: 180-187. doi: 10.1016/j.conbuildmat.2011.12.020 [17] 鲁彩凤. 自然气候环境下粉煤灰混凝土耐久性预计方法[D]. 徐州: 中国矿业大学, 2012. LU Caifeng. Durability prediction method for fly ash concrete in natural climate environment[D]. Xuzhou: China University of Mining & Technology, 2012. (in Chinese) -