Division of protection area of groundwater source area near Hutuo River based on MODFLOW mode
-
摘要: 科学合理地划分地下饮用水源地保护区,能够以最精准的范围和较低的经济成本来预防水源受到污染。基于MODFLOW模型对石家庄市滹沱河新调整的地下水源地的地下水流场进行模拟计算,采用MODPATH计算了2种不同工况下示踪粒子反向运移100和1 000 d的运移轨迹。结果表明,2种工况下示踪粒子在100 d末的平均运移距离分别为0.54和0.49 km;示踪粒子在1 000 d末的平均运移距离分别为6.1和5.6 km。此外,还分析了入渗场使用条件下地下水流场的变化。分析2种工况的计算结果表明,水源地的抽水井概化成井群时,示踪粒子反向运移的轨迹几何形状更加规则,且迁移距离相对较短。同时,考虑到入渗场补水情况,故将整个入渗场范围纳入一级保护区。Abstract: The division of underground drinking water source protection areas in scientific and reasonable ways can prevent water sources from being polluted in the most precise ways and with a lower economic cost. The MODFLOW model was utilized to develop and calculate a simulation of the groundwater flow field of the Hutuo River groundwater source area in Shijiazhuang City. By utilizing the MODPATH, the 100 days and 1 000 days reverse migration trajectories of the tracer particles subjected to two different working conditions were calculated. The results were as follows: the average migration distances of the tracer particles at the end of 100 days under each of the two conditions were 0.54 km and 0.49 km; moreover, the average migration distance of each of the tracer particles at the end of 1 000 days was 6.1 km and 5.6 km. Also, the simulation considered the change of the groundwater flow field under the condition of utilizing the infiltration field. By analyzing the calculation results of these two working conditions, it was concluded that when the pumping wells inside of the water source area were generalized into the well groups, the specific trajectory geometry of the tracer particle reverse migration was more regular, and its migration distance was relatively short. At the same time, by considering the specific water supplement situation of the infiltration field, the whole infiltration field was included in the first-grade protection area as well.
-
表 1 研究区水文地质参数分区
Table 1. Division of hydrogeological parameters in the study area
分区号 渗透系数/(10−3 m·s−1) 给水度 分区号 渗透系数/(10−3 m·s−1) 给水度 1 1.00 0.20 8 7.50 0.24 2 2.20 0.19 9 1.60 0.15 3 4.60 0.22 10 2.00 0.18 4 2.00 0.16 11 1.80 0.17 5 1.50 0.14 12 2.70 0.20 6 1.20 0.11 13 7.50 0.26 7 1.60 0.10 表 2 不同工况下的模拟计算结果
Table 2. Simulation results under three working conditions
工 况 概化条件 100 d运移流线长度
(平均长度)/km1 000 d运移流线长度
(平均长度)/km特 点 工况1 17口水井单独设置反向示踪粒子 0.10~0.83(0.54) 3.0~7.4(6.1) 100和1 000 d的反向示踪粒子呈现长方喇叭状 工况2 17口水井概化成1个水井群 0.12~0.83(0.49) 3.1~7.4(5.6) 呈现出不规则图形 入渗条件下 增加入渗场为补给水源,
各单井设置反向示踪粒子入渗场范围内 2.4~3.5(3.0) 粒子捕获区范围为抽水井群南部边界与滹沱河
入渗场北部边界之间 -
[1] 李景远, 吴巍, 周孝德, 等. 干旱区库坝工程对地下水的影响[J]. 水利水运工程学报,2015(6):68-75. (LI Jingyuan, WU Wei, ZHOU Xiaode, et al. Impacts given by reservoir works on groundwater in arid area[J]. Hydro-Science and Engineering, 2015(6): 68-75. (in Chinese) [2] 付青, 郑丙辉. 关于饮用水水源地规范化建设的思考[J]. 环境保护,2015,43(14):51-54. (FU Qing, ZHENG Binghui. Thoughts on the standardization construction of drinking water sources[J]. Environmental Protection, 2015, 43(14): 51-54. (in Chinese) [3] 邓媛媛, 胡立堂, 高童, 等. 吴忠市金积地下水饮用水源地保护区划分[J]. 南水北调与水利科技,2013,11(1):127-131. (DENG Yuanyuan, HU Litang, GAO Tong, et al. Delineation of drinking groundwater sources protection areas in Jinji County of Wuzhong City[J]. South-to-North Water Transfers and Water Science & Technology, 2013, 11(1): 127-131. (in Chinese) [4] 王涵, 刘琦, 张翼龙, 等. 数值模拟法划分地下饮用水源保护区—以内蒙古呼和浩特市城市水源地为例[J]. 水文地质工程地质,2018,45(6):23-30. (WANG Han, LIU Qi, ZHANG Yilong, et al. Division of the drinking groundwater protection area based on numerical methods: a case study near Hohhot in Inner Mongolia[J]. Hydrogeology & Engineering Geology, 2018, 45(6): 23-30. (in Chinese) [5] 肖杰, 钱骏, 赵红梅, 等. 基于MODFLOW数值模拟法的地下水饮用水源保护区划分[J]. 四川环境,2013,32(5):83-87. (XIAO Jie, QIAN Jun, ZHAO Hongmei, et al. Division of groundwater protection areas of drinking water based on MODFLOW numerical simulation[J]. Sichuan Environment, 2013, 32(5): 83-87. (in Chinese) doi: 10.3969/j.issn.1001-3644.2013.05.016 [6] 郭欣伟, 黄忠文, 何宏谋, 等. 渭河傍河水源地开采地下水数值模拟[J]. 人民黄河,2014,36(4):33-36. (GUO Xinwei, HUANG Zhongwen, HE Hongmou, et al. Study on numerical simulation of groundwater flow in Weihe riverside well field[J]. Yellow River, 2014, 36(4): 33-36. (in Chinese) doi: 10.3969/j.issn.1000-1379.2014.04.011 [7] 代美龄. 关中盆地典型地下水水源地保护区划分研究[D]. 西安: 长安大学, 2016. DAI Meiling. Delineation of typical groundwater source protection zones in the Guanzhong Basin[D]. Xi’an: Chang’an University, 2016. (in Chinese) [8] 陈敏建, 张秋霞, 汪勇, 等. 西辽河平原地下水补给植被的临界埋深[J]. 水科学进展, 2019, 30(1): 24-33. CHEN Minjian, ZHANG Qiuxia, WANG Yong, et al. Critical depth of recharge of the vegetation by groundwater in the West Liaohe Plain[J]. Advances in Water Science, 2019, 30(1): 24-33.(in Chinese) [9] 古力米热·哈那提, 张音, 关东海, 等. 生态输水条件下塔里木河下游断面尺度地下水流数值模拟[J]. 水科学进展, 2020, 31(1): 61-70. GULIMIRE Hanati, ZHANG Yin, GUAN Donghai, et al. Numerical simulation of groundwater flow at cross-section scale in the lower reaches of Tarim River under the condition of ecological water conveyance[J]. Advances in Water Science, 2020, 31(1): 61-70. (in Chinese) [10] 杜新强. 地下水流数值模拟基础[M]. 北京: 中国水利水电出版社, 2014. DU Xinqiang. Foundation of groundwater numerical simulation[M]. Beijing: China Water & Power Press, 2014. (in Chinese) [11] 刘光孟, 汪云甲, 张海荣, 等. 空间分析中几种插值方法的比较研究[J]. 地理信息世界,2011,9(3):41-45. (LIU Guangmeng, WANG Yunjia, ZHANG Hairong, et al. Comparative study of several interpolation methods on spatial analysis[J]. Geomatics World, 2011, 9(3): 41-45. (in Chinese) doi: 10.3969/j.issn.1672-1586.2011.03.008 [12] 河北省水文工程地质勘查院. 石家庄市主城区应急后备水源地调整项目[R]. 石家庄: 河北省水文工程地质勘查院, 2018. Hebei Institute of Hydrogeology and Engineering Geology. Adjustment plan of emergency reserve water source in main urban area of Shijiazhuang City[R]. Shijiazhuang: Hebei Institute of Hydrogeology and Engineering Geology, 2018. (in Chinese) [13] 国家生态环境部. 饮用水水源地保护区划分技术规范: HJ 338—2018[S]. 北京: 中国环境科学出版社, 2018. Ministry of Ecology and Environment of the People's Republic of China. Technical code for division of drinking water source protection area: HJ 338—2018[S]. Beijing: China Environmental Science Press, 2018. (in Chinese) -