Prediction of seepage water level extremum of earth rock dam
-
摘要: 渗压水位极值预测是监控土石坝安全的主要途径之一,目前用于渗压水位极值预测方法需给出正确的自变量。渗压水位极值最主要的影响因素是上游水位,当渗压水位极值与上游水位相关性弱时,预测模型准确度低。提出一种仅考虑测值序列、不考虑自变量的渗压水位极值预测及评价方法。该方法基于最大Lyapunov指数建立预测模型,利用马氏链的遍历性和平稳分布对该无自变量模型进行评价。算例表明:对于与自变量相关性弱的渗压水位极值,预测模型的预测效果优于常规方法,误差评估模型评价合理。基于混沌理论和随机过程的预测模型及评价方法能形成一套精度较高、实用性强的序列预测及评价方法,覆盖常规预测方法的弱能力区域,可用于建立自变量不明确的测值序列预测模型。Abstract: Prediction of seepage water level extremum is one of the main means to monitor the safety of the earth rock dam, and dam body seepage water level is an important physical quantity to evaluate the seepage characteristics of the earth rock dam. Currently, the common sense of the extreme value prediction methods is on the prerequisite of giving correct independent variables, when such methods being applied. The most important factor affecting the seepage water level extremum is the upstream water level. When the correlation between the seepage water level extremum and the upstream water level is quite good, the predication accuracy provided by conventional models is quite high; when the correlation between the seepage water level extremum and the upstream water level is weak, the predication accuracy provided by conventional models is low. To resolve this issue, this paper proposes a method of predicting and evaluating the seepage water level extremum, which considers the measured value sequence only and neglects the independent variables. Based on the maximum Lyapunov index, a prediction model is established, and the ergodicity and stationary distribution of Markov chain are applied to evaluate this independent variable model. The example shows that the prediction effect of the prediction model based on maximum Lyapunov index is better than that of conventional methods for seepage water level extremum, which has weak correlation with independent variables, and the error assessment model based on Markov chain provides reasonable evaluation. The prediction model and evaluation method based on chaos theory and stochastic process that is proposed in this paper can form a systematic approach to the sequence prediction as well as evaluation method with high accuracy and strong practicability, covering the weak area of conventional prediction methods. It can be used to establish the prediction model for the measured value sequence with uncertain independent variables.
-
表 1 模型误差序列及其状态
Table 1. Errors of sequence and their states
日期 实测值/
m模型
预测值/m实测值-
模型值/m混沌模型
相对误差/%状态 2008.5 18.49 18.13 0.36 2.00 Ⅱ 2008.6 18.33 17.92 0.41 2.30 Ⅱ 2008.7 19.86 18.35 1.51 8.24 Ⅲ 2008.8 20.46 20.26 0.20 0.99 Ⅱ 2008.9 20.13 19.67 0.46 2.34 Ⅱ 2008.10 19.84 19.25 0.59 3.07 Ⅱ 2008.11 18.72 19.25 −0.53 −2.75 Ⅰ 2008.12 18.03 18.06 −0.03 −0.16 Ⅰ 2009.1 17.50 17.47 0.03 0.19 Ⅱ 2009.2 17.02 17.01 0.01 0.08 Ⅱ 2009.3 16.65 16.53 0.12 0.75 Ⅱ 2009.4 16.64 17.83 −1.19 −6.66 Ⅰ 2009.5 16.87 16.20 0.67 4.16 Ⅱ 2009.6 19.00 16.76 2.24 13.39 Ⅲ 2009.7 19.77 18.35 1.42 7.75 Ⅲ 2009.8 19.88 20.48 −0.60 −2.93 Ⅰ 2009.9 19.58 19.90 −0.32 −1.61 Ⅰ 2009.10 19.03 19.90 −0.87 −4.39 Ⅲ 表 2 相对误差分级
Table 2. Relative error classification table
状态 级别 相对误差区间 Ⅰ 偏小 −6.66%~0.06% Ⅱ 偏大 0.06%~4.37% Ⅲ 大 4.37%~13.39% -
[1] 王士军, 谷艳昌, 王宏, 等. 大尺度土坝漫顶溃决试验工程性态测试与分析[J]. 岩土工程学报,2016,38(10):1881-1888. (WANG Shijun, GU Yanchang, WANG Hong, et al. Monitoring and analysis of full-scale embankment overtopping failure tests[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1881-1888. (in Chinese) doi: 10.11779/CJGE201610018 [2] 倪沙沙, 迟世春. 基于粒子群支持向量机的高心墙堆石坝渗透系数反演[J]. 岩土工程学报,2017,39(4):727-734. (NI Shasha, CHI Shichun. Back analysis of permeability coefficient of high core rockfill dam based on particle swarm optimization and support vector machine[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 727-734. (in Chinese) doi: 10.11779/CJGE201704019 [3] 梅世昂, 霍家平, 钟启明. 均质土坝漫顶溃决“陡坎”移动参数确定[J]. 水利水运工程学报, 2016(2): 24-32. MEI Shiang, HUO Jiaping, ZHONG Qiming. Determination of headcut migration parameters for homogeneous earth dam due to overtopping failure[J]. Hydro-Science and Engineering, 2016(2): 24-32. (in Chinese) [4] 梁国贺. 时空全域代理模型及大坝参数反演应用[D]. 北京: 清华大学, 2017. LIANG Guohe. Global surrogate model with temporal-spatial basis and its application in parameter inversion of dam[D]. Beijing: Tsinghua University, 2017. (in Chinese) [5] 高俊, 黄耀英, 万智勇, 等. 含冷却水管混凝土坝温度计埋设位置优选[J]. 水利水运工程学报, 2017(3): 93-99. GAO Jun, HUANG Yaoying, WAN Zhiyong, et al. Optimization analysis of setting location of thermometer in concrete dam with cooling water pipes[J]. Hydro-Science and Engineering, 2017(3): 93-99. (in Chinese) [6] 魏博文, 熊威, 李火坤, 等. 融合混沌残差的大坝位移蛙跳式组合预报模型[J]. 武汉大学学报•信息科学版,2016,41(9):1272-1278. (WEI Bowen, XIONG Wei, LI Huokun, et al. Dam deformation forecasting of leapfrog combined model merging residual errors of chaos[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9): 1272-1278. (in Chinese) [7] 胡耀垓, 彭铭, 赵正予, 等. 电离层TEC的混沌特性分析及预报[J]. 华中科技大学学报(自然科学版),2016,44(9):26-31. (HU Yaogai, PENG Ming, ZHAO Zhengyu, et al. Preliminary research of ionosphere TEC chaotic characteristics and prediction[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2016, 44(9): 26-31. (in Chinese) [8] 李萌, 包腾飞, 杨建慧, 等. 灰色模型改进的大坝变形分形几何监控模型[J]. 水利水运工程学报,2016(4):104-110. (LI Meng, BAO Tengfei, YANG Jianhui, et al. Fractal geometry monitoring model for dam deformation based on improved grey model[J]. Hydro-Science and Engineering, 2016(4): 104-110. (in Chinese) [9] 刘树勇, 位秀雷, 方远, 等. 混沌振动Lyapunov特征指数重构演化矩阵算法[J]. 哈尔滨工程大学学报,2017,38(5):746-751. (LIU Shuyong, WEI Xiulei, FANG Yuan, et al. A reconstruction evolution matrices algorithm based on Lyapunov characteristic exponent of chaotic vibration[J]. Journal of Harbin Engineering University, 2017, 38(5): 746-751. (in Chinese) [10] 戴波, 何启. 大坝变形监测统计模型与混沌优化ELM组合模型[J]. 水利水运工程学报,2016(6):9-15. (DAI Bo, HE Qi. A model combining with statistic model and chaos-optimized extreme learning machine for dam deformation monitoring[J]. Hydro-Science and Engineering, 2016(6): 9-15. (in Chinese) [11] LAHA P, LAKSHMIBALA S, BALAKRISHNAN V. Bifurcations, time-series analysis of observables, and network properties in a tripartite quantum system[J]. Physics Letters A, 2020, 384(23): 126565. doi: 10.1016/j.physleta.2020.126565 [12] LIU J P, LI W J, CHEN L J, et al. Estimation of the monthly precipitation predictability limit in China using the nonlinear local Lyapunov exponent[J]. Journal of Meteorological Research, 2016, 30(1): 93-102. doi: 10.1007/s13351-015-5049-z [13] 童晨曦, 张升, 李希, 等. 基于Markov链的岩土材料颗粒破碎演化规律研究[J]. 岩土工程学报,2015,37(5):870-877. (TONG Chenxi, ZHANG Sheng, LI Xi, et al. Evolution of geotechnical materials based on Markov chain considering particle crushing[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 870-877. (in Chinese) doi: 10.11779/CJGE201505013 [14] 郇久阳, 张志强, 李宁. 含交错节理岩石直剪试验颗粒流模拟[J]. 水利水运工程学报, 2018(4): 9-17. HUAN Jiuyang, ZHANG Zhiqiang, LI Ning. Particle flow simulation of staggered joint rock by direct shear tests[J]. Hydro-Science and Engineering, 2018(4): 9-17. (in Chinese) [15] HAGHIGHI A M, WICKRAMASINGHE I. Probability, statistics, and stochastic processes for engineers and scientists[M]. London: CRC Press, 2021. [16] FENG X W, SHAO Q M. Self-normalized Cramér-type Moderate deviations for functionals of Markov Chain[J]. Acta Mathematicae Applicatae Sinica, 2020, 36(2): 294-313. doi: 10.1007/s10255-020-0924-5 -