Influence of grain composition and thickness of filter layer on seepage characteristics of dam
-
摘要: 反滤层的粒度组成和反滤层厚度及其结构对大坝渗流特性具有显著的影响。针对某黏土心墙砂砾石坝,设计了黏土心墙两侧反滤层材料的颗粒级配范围线(上、下包线),配制了材料颗粒级配,并对其进行了4组渗透变形试验,获得了试验材料的临界坡降、渗透系数和渗透破坏形式。根据渗透试验结果和双层反滤结构,采用有限元数值方法对两层反滤料厚度的11种组合(厚度变化范围为0.5~2.5 m)的大坝渗流特性进行了模拟分析。结果表明:(1)反滤层的第一层粒度较细,包线内土料粒度由细变粗时,对渗透系数的影响较小,对临界坡降和破坏坡降的影响较大,且破坏类型由流土变为管涌形式;第二层反滤砂砾石颗粒较粗,且粒径5 mm以下细颗粒含量很少,渗透特性取决于粗粒材料的含量,为过渡型破坏类型。(2)当双层反滤层总厚度不变(厚度3 m)时,改变反滤层的厚度组合和粒度组合,对大坝单宽渗流量和心墙出逸点高程的影响较小。第一层反滤料厚度从0.5 m增加到2.5 m,心墙和反滤料的出逸比降均呈非线性增长,第一层反滤料出逸比降增幅为92.7%,第二层反滤料的出逸比降增幅为70.0%。第一层反滤料粒度变化比第二层反滤料粒度变化对心墙和反滤料出逸比降的影响小。(3)反滤层厚度保持3 m时,建议第一层反滤料厚度取1.0~1.5 m,相应地第二层反滤料厚度取2.0~1.5 m;粒度组成选取两层反滤料都靠近下包线位置,即粒度较粗为最优。Abstract: The grain size composition and thickness of filter layer and its structure have significant influence on the seepage characteristics of dam. For a clay core dam project, the particle gradation of filter material on both sides of the clay core (upper and lower cladding lines) was designed, and the particle gradation of the material was prepared. Four groups of seepage deformation tests were carried out, and the critical hydraulic gradient, permeability coefficient and seepage failure types of the test materials were obtained. The double-layer filter structure was designed according to the test results. Eleven combinations of the thickness of the two-layer filter material (the thickness vary from 0.5 m to 2.5 m), the seepage characteristics of the dam were analyzed by finite element method. The results show as follows: (1) The grain size of the first filter is fine, there is little influence on the permeability coefficient of the particle size in the inclusion line of soil material, the influence on critical hydraulic gradient and failure gradient is large, and the form of seepage failure is changed from soil flow to piping; the second filter sand gravel particles are coarse, and the content of fine particles below 5 mm is very small, and the permeability characteristic is determined by the content of coarse grain material, which is transitional failure. (2) When the total thickness of the filters is invariant (3 m), the change of the thickness combination and particle size of the two filters has little effect on the seepage per unit width and the height of the overflow point of the core. The first filter thickness increases from 0.5 m to 2.5 m, the core and the filter material exit gradient shows a nonlinear growth. The exit gradient of the first filter is increased by 92.7%, and second filter by 70% respectively. The particle size change of the first filter is less than that of the second filter. (3) The thickness of the first filter is suggested to be 1.0~1.5 m, the corresponding thickness of the second filter is 1.5~2.0 m; and the particle size selection of both layers of filter material is close to the lower envelope line, and the coarse particle size is the best.
-
Key words:
- thickness of filter /
- grain composition of filter /
- seepage /
- hydraulic gradient /
- clay core dam
-
表 1 黏土心墙砂砾石坝渗流数值模拟方案
Table 1. Seepage simulation conditions of clay-core dam
方案编号 1 2 3 4 5 6 7 8 9 10 11 第一层反滤料厚/m 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 第二层反滤料厚/m 2.5 2.3 2.1 1.9 1.7 1.5 1.3 1.1 0.9 0.7 0.5 表 2 反滤料渗透试验结果
Table 2. Permeability test results of filters
试样名称 试验干密度/(g·cm−3) 临界坡降 允许坡降 k20/(cm·s−1) 破坏坡降 破坏型式 第1组试验 1.81 1.15 0.46 2.27×10−3 13.66 流土 第2组试验 1.81 0.85 0.34 6.93×10−3 2.10 管涌 第3组试验 2.00 0.30 0.12 7.74×10−1 / 过渡型 第4组试验 2.00 0.25 0.10 1.78 / 过渡型 表 3 大坝渗流计算结果
Table 3. Calculation results of dam seepage
计算工况 单宽渗流量/(10−5 m2·s−1) 心墙出逸点高程/m 心墙出逸比降 第一层反滤料出逸比降/10−4 第二层反滤料出逸比降/10−4 正常蓄水位 2.221 5 340.074 1.160 1.809 1.721 设计洪水位 2.263 6 340.075 1.182 1.843 1.754 校核洪水位 2.371 2 340.387 1.238 1.931 1.837 -
[1] 刘杰. 土的渗透稳定与渗流控制[M]. 北京: 中国水利水电出版社, 1992. LIU Jie. Permeating stability of soil and permeating control[M]. Beijing: Chinese Water Conservancy and Electric Power Press, 1992. (in Chinese) [2] 郭庆国, 金亚玲. 砂石滤层准则的研究与进展[J]. 水利水电科技进展,2002,22(1):51-55. (GUO Qingguo, JIN Yaling. Advances in research of sand filter criterion[J]. Advances in Science and Technology of Water Resources, 2002, 22(1): 51-55. (in Chinese) doi: 10.3880/j.issn.1006-7647.2002.01.018 [3] SHERARD J L. Trends and debatable aspects in embankment dam engineering[J]. Water Power and Dam Construction, 1984, 36(12): 26-32. [4] ZEDAN A J, FARIS M R, ABDULSATTAR A A. Seepage analysis through an earth dam (KHASA-CHAI Dam) as a case study[J]. Engineering and Technology Journal, 2017, 35(2): 172-181. [5] 孙君实, 相彪. 反滤料级配设计的思考[J]. 岩土工程学报,2011,33(8):1153-1158. (SUN Junshi, XIANG Biao. Thoughts on gradation design of filter materials[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1153-1158. (in Chinese) [6] 郭庆国. 粗粒土的渗透特性及渗流规律[J]. 西北水电技术,1985(1):42-47. (GUO Qingguo. Seepage characteristics and seepage law of coarse-grained soil[J]. Northwest Hydropower, 1985(1): 42-47. (in Chinese) [7] 陈群, 谷宏海, 何昌荣. 砾石土防渗料-反滤料联合抗渗试验[J]. 四川大学学报(工程科学版),2012,44(1):13-18. (CHEN Qun, GU Honghai, HE Changrong. Combination seepage failure test of gravelly soil and the filter[J]. Journal of Sichuan University (Engineering Science Edition), 2012, 44(1): 13-18. (in Chinese) [8] 唐新军, 凤家骥, 凤炜. “635”水利枢纽粘土心墙坝反滤料特性分析与试验研究[J]. 武汉大学学报(工学版),2002,35(2):5-9, 39. (TANG Xinjun, FENG Jiaji, FENG Wei. Analysis of ECRD’s filter characteristic and study on experiment of “635” multipurpose dam project[J]. Engineering Journal of Wuhan University (Engineering Edition), 2002, 35(2): 5-9, 39. (in Chinese) [9] 刘杰, 谢定松. 反滤层设计原理与准则[J]. 岩土工程学报,2017,39(4):609-616. (LIU Jie, XIE Dingsong. Design principles and guidelines of filters[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 609-616. (in Chinese) doi: 10.11779/CJGE201704004 [10] RICHARDS K S, REDDY K R. Critical appraisal of piping phenomena in earth dams[J]. Bulletin of Engineering Geology and the Environment, 2007, 66(4): 381-402. doi: 10.1007/s10064-007-0095-0 [11] RÖNNQVIST H, FANNIN J, VIKLANDER P, et al. Discussion: on the use of empirical methods for assessment of filters in embankment dams[J]. Géotechnique Letters, 2015, 5(3): 140-141. doi: 10.1680/jgele.14.00114 [12] CALAMAK M, YANMAZ A M. Assessment of core-filter configuration performance of rock-fill dams under uncertainties[J]. International Journal of Geomechanics, 2018, 18(4): 06018006. doi: 10.1061/(ASCE)GM.1943-5622.0001114 [13] 中华人民共和国国家发展和改革委员会. 碾压式土石坝设计规范: DL/T 5395—2007[S]. 北京: 中国电力出版社, 2008. National Development and Reform Commission. Design specification for rolled earth-rock fill dams: DL/T 5395—2007[S]. Beijing: China Electric Power Press, 2008. (in Chinese) [14] 中华人民共和国水利部. 土工试验规程: SL 237—1999[S]. 北京: 中国水利水电出版社, 1999. Ministry of Water Resources of the PRC. Specification of soil test: SL 237—1999[S]. Beijing: China Water & Power Press, 1999. (in Chinese) [15] 沙成刚. 基于Geo-Studio的土石坝渗流与稳定分析研究[D]. 兰州: 兰州理工大学, 2014. SHA Chenggang. The earth-rock dam seepage and stability analysis based on the Geo-Studio[D]. Lanzhou: Lanzhou University of Technology, 2014. (in Chinese) [16] 王常明, 鲁鋆, 马栋和. 土石围堰中混凝土防渗墙设计方案的数值优化[J]. 吉林大学学报(地球科学版),2020,50(3):857-865. (WANG Changming, LU Yun, MA Donghe. Numerical optimization of design schemes for concrete cutoff wall in earth-rock cofferdam[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(3): 857-865. (in Chinese) [17] 丁树云, 蔡正银. 土石坝渗流研究综述[J]. 人民长江,2008,39(2):33-36. (DING Shuyun, CAI Zhengyin. Summary of seepage research for embankment dam[J]. Yangtze River, 2008, 39(2): 33-36. (in Chinese) doi: 10.3969/j.issn.1001-4179.2008.02.013 -