Influence of coarse-grained content in the gravelly soil on steady seepage of high earth-rock dam
-
摘要: 高心墙堆石坝心墙防渗料多采用砾石土,当砾石土的粗粒含量(指质量分数,下同)超过50%时,渗透系数很可能超过规范要求,不利于坝体渗透稳定。通过对粗粒含量超标单元赋予不同的渗透系数,采用三维有限元法分析了心墙局部砾石土粗粒含量超标时对坝体渗流的影响。结果表明:心墙局部砾石土粗粒含量超标对坝体的渗流场分布和单宽渗流量影响都较小,对心墙内渗透坡降影响较大,最大渗透坡降都出现在未超标单元处。对于超标区域在中下部的情况,当超标单元粗粒含量小于55%时,渗透坡降最大增幅为36.4%;超标单元粗粒含量大于55%时,最大渗透坡降显著增大,且会超过允许坡降,不利于坝体渗透稳定。因此,在实际工程中应结合砾石土料的级配和细粒含量情况,做好下游反滤层的设计,并严格控制砾石土的施工压实度,以保证坝体安全。Abstract: Gravelly soil has been mostly used as the core material of the high earth-rock dam. When the coarse-grained content of a gravelly soil (referring to the mass fraction, the same below) may exceed 50%, the coefficient of permeability of a gravelly soil is highly likely to fail to meet engineering specifications or standards. This is deleterious to the seepage stability of a dam. Three-dimensional finite element numerical simulation was conducted to study the influence of a gravelly soil having a coarse-grained content of greater than 50% on the seepage through a high earth-rock dam. The coefficient of permeability of elements having a coarse-grained content of greater than 50% is assigned a different value compared with those elements having a coarse-grained content equal to 50% in the simulation. The results show that the gravelly soil in the different parts of the core having a coarse-grained content of greater than 55% had little effect on the seepage field and the seepage discharge through the dam, but exerted a significant influence on the seepage gradient. The maximum seepage gradient occurred at the element having a coarse-grained content equal to 50%. For those cases having a coarse-grained content of less than 55% in the lower and middle parts of the core, the increase in the maximum seepage gradient was 36.4%. For those cases having a coarse-grained content of greater than 55% in the lower and middle parts of the core, the increase in the maximum gradient was even higher, and might exceed the allowable seepage gradient, with adverse effects upon dam safety. Therefore, in practice, the downstream filter should be designed based on the grading and the fine particle content of such gravelly soils. Besides, the relative density of such gravelly soil should be controlled to ensure the safety of the body of the dam.
-
表 1 坝体材料计算参数
Table 1. Calculation parameters of dam materials
材料
名称孔隙率 渗透系数/
(cm∙s−1)破坏渗透
坡降允许渗透
坡降心墙(P5=50%) 0.26 1.00×10−5 7.00 3.50 心墙(P5=55%) 0.26 2.24×10−5 6.38 3.19 心墙(P5=60%) 0.26 5.00×10−5 5.75 2.88 心墙(P5=65%) 0.26 1.12×10−4 5.13 2.56 心墙(P5=70%) 0.26 2.50×10−4 4.50 2.25 反滤 0.22 3.00×10−3 − − 过渡 0.21 3.00×10−2 − − 堆石 0.20 3.00×10−1 − − -
[1] 朱建华, 游凡, 杨凯虹. 宽级配砾石土坝料的防渗性及反滤[J]. 岩土工程学报,1993,15(6):18-27. (ZHU Jianhua, YOU Fan, YANG Kaihong. Permeability, erosion resistance and filters of broadly graded gravelly soil for embankment dam construction[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(6): 18-27. (in Chinese) doi: 10.3321/j.issn:1000-4548.1993.06.003 [2] 陈志波, 朱俊高, 王强. 宽级配砾质土压实特性试验研究[J]. 岩土工程学报,2008,30(3):446-449. (CHEN Zhibo, ZHU Jungao, WANG Qiang. Compaction property of wide grading gravelly soil[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 446-449. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.03.024 [3] 中华人民共和国水利部. 碾压式土石坝设计规范: SL 274—2001[S]. 北京: 中国水利水电出版社, 2001. Ministry of Water Resources of the People's Republic of China. Design code for rolled earth-rock fill dams: SL 274—2001[S]. Beijing: China Water Resources and Hydropower Press, 2001. (in Chinese) [4] 保华富, 谢正明, 庞桂, 等. 长河坝水电站大坝砾石土心墙填筑质量控制[J]. 云南水力发电,2015,31(5):20-25. (BAO Huafu, XIE Zhengming, PANG Gui, et al. Study on the filling quality control of the dam gravel soil core wall of Changheba Hydropower station[J]. Yunnan Water Power, 2015, 31(5): 20-25. (in Chinese) doi: 10.3969/j.issn.1006-3951.2015.05.008 [5] 王冕, 陈群. 库区蓄水速度对不均匀心墙渗流场的影响[J]. 地下空间与工程学报,2014,10(增刊2):1794-1799. (WANG Mian, CHEN Qun. Influence of reservoir filling velocity on the seepage in the non-uniform core wall[J]. Chinese Journal of Underground Space and Engineering, 2014, 10(Suppl2): 1794-1799. (in Chinese) [6] 胡冉, 陈益峰, 李典庆, 等. 心墙堆石坝渗透稳定可靠性分析的随机响应面法[J]. 岩土力学,2012,33(4):1051-1060. (HU Ran, CHEN Yifeng, LI Dianqing, et al. Reliability analysis of seepage stability of core-wall rockfill dam based on stochastic response surface method[J]. Rock and Soil Mechanics, 2012, 33(4): 1051-1060. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.04.014 [7] 王林, 徐青. 基于蒙特卡罗随机有限元法的三维随机渗流场研究[J]. 岩土力学,2014,35(1):287-292. (WANG Lin, XU Qing. Analysis of three dimensional random seepage field based on Monte Carlo stochastic finite element method[J]. Rock and Soil Mechanics, 2014, 35(1): 287-292. (in Chinese) [8] 王飞, 王媛, 倪小东. 渗流场随机性的随机有限元分析[J]. 岩土力学,2009,30(11):3539-3542. (WANG Fei, WANG Yuan, NI Xiaodong. Analysis of random characteristics of seepage field by stochastic finite element method[J]. Rock and Soil Mechanics, 2009, 30(11): 3539-3542. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.11.054 [9] 李守巨, 上官子昌, 孙伟, 等. 多孔岩土材料渗透系数与孔隙率关系随机模拟[J]. 辽宁工程技术大学学报(自然科学版),2010,29(4):589-592. (LI Shouju, SHANGGUAN Zichang, SUN Wei, et al. Simulation on relationship between hydraulic conductivity and porosity for porous soils[J]. Journal of Liaoning Technical University (Natural Science), 2010, 29(4): 589-592. (in Chinese) doi: 10.3969/j.issn.1008-0562.2010.04.017 [10] 汪涛, 徐力群. 考虑随机施工缺陷的心墙坝三维渗流特性分析[J]. 水电能源科学,2016,34(12):87-89, 136. (WANG Tao, XU Liqun. Three-dimensional seepage characteristic analysis of core wall dam considering stochastic construction defects[J]. Water Resources and Power, 2016, 34(12): 87-89, 136. (in Chinese) [11] 冯璐. 土体不均匀性和各向异性对土坝渗流场的影响分析[D]. 西安: 西安理工大学, 2013. FENG Lu. Influence on the seepage field of earth dam considering the uneven and anisotropy of soil[D]. Xi’an: Xi’an University of Technology, 2013. (in Chinese) [12] 高江林, 陈云翔. 基于渗流与应力耦合的防渗墙与坝体相互作用的数值模拟[J]. 水利水运工程学报,2013(2):58-63. (GAO Jianglin, CHEN Yunxiang. Numerical simulation of interaction between cut-off wall and earth-rock dam based on coupling of seepage and stress[J]. Hydro-Science and Engineering, 2013(2): 58-63. (in Chinese) -