Application of semipartial subtraction set pair potential method to the dynamic assessment of regional drought risk
-
摘要: 为深入挖掘旱灾风险动态评估中评价样本与评价标准之间存在的不确定性问题,提出用半偏减法集对势这一新的联系数伴随函数,建立区域旱灾风险动态评估的半偏减法集对势方法(SSSPP),并应用于宿州市2007—2017年旱灾风险动态评估和风险脆弱性因子识别研究。结果表明:宿州市旱灾风险综合等级基本在2级以上,处于偏危险状态,通过半偏减法集对势值可判别2009、2010及2011年处于偏反势,为高危险年份。通过半偏减法集对势方法识别出了宿州市旱灾风险脆弱性指标有:相对湿润度指数、土壤相对湿度、土壤类型、单位面积水资源量、耕地率、农业人口比例、水库调蓄率、单位面积现状供水能力、单位面积应急浇水能力、灌溉指数、节水灌溉率,这11个指标是宿州市降低旱灾风险等级进一步需要调控的对象。Abstract: To gain the insights into uncertainty issues between evaluation samples and standards of dynamic drought risk assessment, we put forward a novel connection number accompanying function based on semipartial subtraction set pair potential, and constructed a dynamic regional drought risk assessment model built upon semipartial subtraction set pair potential (SSSPP), followed by its application to the dynamic drought risk assessment and vulnerability factor identification of Suzhou city in 2007—2017. The results show that the comprehensive drought risk level of Suzhou city was above level 2 basically, in the partial danger state, while the levels in 2009, 2010 and 2011 were in a partial negative potential (high dangerous years), judged by the SSSPP method. Drought vulnerability indicators of Suzhou city identified were: index of relative wetting degree, relative humidity, soil type, soil water content, rate of cultivated land per unit area, proportion of agricultural population, reservoir storage rate and water status quo of water supply capacity per unit area, emergency ability per unit area, and water saving irrigation index evaluation. Eleven indicators mentioned above were the objects that need to be further regulated to improve the drought risk level in Suzhou.
-
表 1 宿州市旱灾风险评估指标、标准等级及指标和各子系统权重
Table 1. Drought risk assessment indicators, standard grades, and weights of each subsystem and index in Suzhou
子系统 指标层 评价标准 指标权重 子系统权重 微险(1级) 轻险(2级) 重险(3级) 危险性子系统 x1,1降雨负距平百分率(%) ≤15 15~25 >25 0.069 2 0.329 0 x1,2年均降雨量(mm) ≥950 950~850 <850 0.057 4 x1,3相对湿润度指数(%) ≥−0.11 −0.11~ −0.24 <−0.24 0.049 3 x1,4单位面积水资源量占有量(万m3/ km2) ≥52.5 52.5~37.5 <37.5 0.057 0 x1,5土壤相对湿度(%) ≥73 73~70 <70 0.044 1 x1,6土壤类型 ≥0.6 0.6~0.4 <0.4 0.052 4 暴露性子系统 x2,1人口密度(人/ km2) ≤500 500~700 >700 0.046 8 0.192 0 x2,2耕地率(%) ≤35 35~45 >45 0.055 5 x2,3复种指数(%) ≤185 185~195 >195 0.042 6 x2,4农业GDP占地区生产总值比例(%) ≤25 25~35 >35 0.046 0 灾损敏感性子系统 x3,1农业人口比例(%) ≤62 62~77 >77 0.059 8 0.241 0 x3,2水田面积比(%) ≤22 22~47 >47 0.067 8 x3,3万元GDP用水量(m3/万元) ≤575 575~725 >725 0.061 7 x3,4森林覆盖率(%) ≥17 17~12 <12 0.051 4 抗旱能力子系统 x4,1人均GDP(元/人) ≥4 500 4 500~3 500 <3 500 0.030 3 0.238 0 x4,2水库调蓄率(%) ≥25 25~15 <15 0.053 2 x4,3单位面积现状供水能力(亿m3/ km2) ≥20 20~14.5 <14.5 0.037 8 x4,4灌溉指数 ≥0.85 0.85~0.75 <0.75 0.045 6 x4,5单位面积应急浇水能力(万m3/km2) ≥7 500 7 500~4 500 <4 500 0.027 7 x4,6监测预警能力(个/100 km2) ≥0.6 0.6~0.4 <0.4 0.018 8 x4,7节水灌溉率(%) ≥35 35~25 <25 0.025 1 表 2 宿州市2007—2017年旱灾风险评估样本值联系数及减法集对势、半偏减法集对势和评价等级值
Table 2. Connection number, subtractive set pair potential, semipartial subtraction set pair potential and evaluation grade of drought risk assessment sample values in Suzhou from 2007 to 2017
年份 样本联系数 减法集对势s1(u) s1( u )态势 半偏减法集对势s2(u) s2( u )态势 综合评价等级值 a b c 2017 0.287 0.404 0.309 −0.030 8 均势 −0.029 2 均势 2.021 2016 0.289 0.401 0.310 −0.028 6 均势 −0.027 1 均势 2.019 2015 0.241 0.407 0.352 −0.155 4 均势 −0.147 7 均势 2.109 2014 0.238 0.408 0.353 −0.161 9 均势 −0.153 9 均势 2.114 2013 0.257 0.395 0.347 −0.126 0 均势 −0.119 5 均势 2.089 2012 0.231 0.393 0.375 −0.199 8 均势 −0.190 4 均势 2.143 2011 0.225 0.391 0.383 −0.220 5 偏反势 −0.209 4 偏反势 2.157 2010 0.190 0.388 0.422 −0.322 2 偏反势 −0.306 8 偏反势 2.231 2009 0.215 0.399 0.385 −0.237 5 偏反势 −0.225 9 偏反势 2.169 2008 0.236 0.385 0.378 −0.195 8 均势 −0.185 6 均势 2.140 2007 0.287 0.363 0.349 −0.085 2 均势 −0.080 3 均势 2.061 -
[1] KIM J S, PARK S Y, HONG H P, et al. Drought risk assessment for future climate projections in the Nakdong River Basin, Korea[J]. International Journal of Climatology, 2020, 40(10): 4528-4540. doi: 10.1002/joc.6473 [2] 金菊良, 宋占智, 崔毅, 等. 旱灾风险评估与调控关键技术研究进展[J]. 水利学报,2016,47(3):398-412. (JIN Juliang, SONG Zhanzhi, CUI Yi, et al. Research progress on the key technologies of drought risk assessment and control[J]. Journal of Hydraulic Engineering, 2016, 47(3): 398-412. (in Chinese) [3] KEYANTASH J A, DRACUP J A. An aggregate drought index: Assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage[J]. Water Resources Research, 2004, 40(9): 1-13. [4] 屈艳萍, 吕娟, 苏志诚, 等. 抗旱减灾研究综述及展望[J]. 水利学报,2018,49(1):115-125. (QU Yanping, LÜ Juan, SU Zhicheng, et al. Research review and perspective of drought mitigation[J]. Journal of Hydraulic Engineering, 2018, 49(1): 115-125. (in Chinese) [5] SHARAFI L, ZARAFSHANI K, KESHAVARZ M, et al. Drought risk assessment: towards drought early warning system and sustainable environment in western Iran[J]. Ecological Indicators, 2020, 114: 106276. doi: 10.1016/j.ecolind.2020.106276 [6] 金菊良, 郦建强, 周玉良, 等. 旱灾风险评估的初步理论框架[J]. 灾害学,2014,29(3):1-10. (JIN Juliang, LI Jianqiang, ZHOU Yuliang, et al. Theoretical framework of drought risk assessment[J]. Journal of Catastrophology, 2014, 29(3): 1-10. (in Chinese) [7] ZHANG H, LI W J, MIAO P P, et al. Risk grade assessment of sudden water pollution based on analytic hierarchy process and fuzzy comprehensive evaluation[J]. Environmental Science and Pollution Research, 2020, 27(1): 469-481. doi: 10.1007/s11356-019-06517-9 [8] 屈艳萍, 高辉, 吕娟, 等. 基于区域灾害系统论的中国农业旱灾风险评估[J]. 水利学报,2015,46(8):908-917. (QU Yanpin, GAO Hui, LÜ Juan, et al. Agricultural drought disaster risk assessment in China based on the regional disaster system theory[J]. Journal of Hydraulic Engineering, 2015, 46(8): 908-917. (in Chinese) [9] KAMRUZZAMAN M, KABIR E, RAHMAN A T M S, et al. Modeling of agricultural drought risk pattern using Markov chain and GIS in the western part of Bangladesh[J]. Environment, Development and Sustainability, 2018, 20(2): 569-588. doi: 10.1007/s10668-016-9898-0 [10] 张竟竟, 郭志富. 基于投影寻踪模型的河南省农业旱灾风险评价[J]. 干旱区资源与环境,2016,30(6):83-88. (ZHANG Jingjing, GUO Zhifu. Comprehensive evaluation on the agricultural drought risk in Henan Province based on projection pursuit model[J]. Journal of Arid Land Resources and Environment, 2016, 30(6): 83-88. (in Chinese) [11] 赵克勤. 集对分析及其初步应用[M]. 杭州: 浙江科学技术出版社, 2000. ZHAO Keqin. Set pair analysis and its preliminary application[M]. Hangzhou: Zhejiang Science and Technology Press, 2000. (in Chinese) [12] 杜雪芳, 李彦彬, 张修宇. 黄河下游生态型引黄灌区水资源承载力研究[J]. 水利水运工程学报,2020(2):22-29. (DU Xuefang, LI Yanbin, ZHANG Xiuyu. Study on water resources carrying capacity of ecological diversion irrigation district in the lower reaches of the Yellow River[J]. Hydro-Science and Engineering, 2020(2): 22-29. (in Chinese) [13] 金菊良, 沈时兴, 张浩宇, 等. 基于全偏确定度的区域水资源承载力动态评价[J]. 水利水运工程学报,2019(6):38-49. (JIN Juliang, SHEN Shixing, ZHANG Haoyu, et al. Dynamic evaluation of regional water resources carrying capacity based on full partial certainty degree[J]. Hydro-Science and Engineering, 2019(6): 38-49. (in Chinese) doi: 10.12170/201906005 [14] 王雅燕, 周玉良, 周平, 等. 基于集对分析的安徽省农业旱灾风险评估[J]. 水电能源科学,2019,37(8):1-5. (WANG Yayan, ZHOU Yuliang, ZHOU Ping, et al. Agricultural drought disaster risk assessment in anhui province based on set pair analysis[J]. Water Resources and Power, 2019, 37(8): 1-5. (in Chinese) [15] 何飘. 基于联系数的区域水资源承载力动态分析评价[D]. 合肥: 合肥工业大学, 2020. (HE Piao. Dynamic analysis and evaluation of regional water resources carrying capacity based on connection number[D]. Hefei: Hefei University of Technology, 2020. (in Chinese) [16] 金菊良, 沈时兴, 郦建强, 等. 基于联系数的区域水资源承载力评价与诊断分析方法[J]. 华北水利水电大学学报(自然科学版),2018,39(1):1-9. (JIN Juliang, SHEN Shixing, LI Jianqiang, et al. Assessment and diagnosis analysis method for regional water resources carrying capacity based on connection number[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2018, 39(1): 1-9. (in Chinese) [17] 李辉, 金菊良, 吴成国, 等. 基于联系数的安徽省水资源承载力动态诊断评价研究[J]. 南水北调与水利科技,2018,16(1):42-49. (LI Hui, JIN Juliang, WU Chengguo, et al. Dynamic evaluation and diagnostic analysis for water resources carrying capacity in Anhui province based on connection number[J]. South-to-North Water Transfers and Water Science & Technology, 2018, 16(1): 42-49. (in Chinese) [18] 金菊良, 洪天求, 王文圣. 基于熵和FAHP的水资源可持续利用模糊综合评价模型[J]. 水力发电学报,2007,26(4):22-28. (JIN Juliang, HONG Tianqiu, WANG Wensheng. Entropy and FAHP based fuzzy comprehensive evaluation model of water resources sustaining utilization[J]. Journal of Hydroelectric Engineering, 2007, 26(4): 22-28. (in Chinese) doi: 10.3969/j.issn.1003-1243.2007.04.005 [19] 金菊良, 陈鹏飞, 陈梦璐, 等. 水文水资源学家陈守煜先生学术研究的知识图谱分析[J]. 水利学报,2019,50(10):1282-1290. (JIN Juliang, CHEN Pengfei, CHEN Menglu, et al. Knowledge map analysis of academic research of Mr. Chen Shouyu, hydrological and water resources specialist[J]. Journal of Hydraulic Engineering, 2019, 50(10): 1282-1290. (in Chinese) [20] 金菊良, 张浩宇, 宁少尉, 等. 效应全偏联系数及其在区域水资源承载力评价中的应用[J]. 华北水利水电大学学报(自然科学版),2019,40(1):1-8. (JIN Juliang, ZHANG Haoyu, NING Shaowei, et al. Effect full partial connection number and its application in evaluation of regional water resources carrying capacity[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2019, 40(1): 1-8. (in Chinese) [21] 徐宗学, 陈浩, 任梅芳, 等. 中国城市洪涝致灾机理与风险评估研究进展[J]. 水科学进展,2020,31(5):713-724. (XU Zongxue, CHEN Hao, REN Meifang, et al. Progress on disaster mechanism and risk assessment of urban flood/waterlogging disasters in China[J]. Advances in Water Science, 2020, 31(5): 713-724. (in Chinese) [22] 殷闯, 何理, 聂倩文, 等. 流域洪灾风险传递规律研究[J]. 中国农村水利水电,2020(12):15-20, 26. (YIN Chuang, HE Li, NIE Qianwen, et al. Research on the flood risk transfer mechanisms within watersheds[J]. China Rural Water and Hydropower, 2020(12): 15-20, 26. (in Chinese) doi: 10.3969/j.issn.1007-2284.2020.12.003 [23] 葛巍, 焦余铁, 李宗坤, 等. 溃坝风险后果研究现状与发展趋势[J]. 水科学进展,2020,31(1):143-151. (GE Wei, JIAO Yutie, LI Zongkun, et al. Status and development trend of research on risk consequences caused by dam breach[J]. Advances in Water Science, 2020, 31(1): 143-151. (in Chinese) [24] 张亚琼, 何楠, 陈毅洋, 等. 基于云模型的生态水利PPP项目利益相关者管理风险评价[J]. 中国农村水利水电,2020(12):148-152, 163. (ZHANG Yaqiong, HE Nan, CHEN Yiyang, et al. Stakeholder risk assessment of ecological water conservancy PPP projects based on cloud model[J]. China Rural Water and Hydropower, 2020(12): 148-152, 163. (in Chinese) doi: 10.3969/j.issn.1007-2284.2020.12.028 -