Characteristics of precipitation intensity regimes in the Rouyuanchuan and Heshuichuan watersheds of the Jing River
-
摘要: 开展降水强度趋势变化研究对提高防洪减灾和水资源管理水平具有重要意义。基于柔远川1980—2017年9个雨量站与合水川1981—2017年10个雨量站的日降水量和小时降水量实测资料,采用MK趋势检验法,分析了最大1 h降水强度(
$ {I}_{\mathrm{h}} $ )、最大1 d降水强度($ {I}_{\mathrm{d}} $ )及分级降水强度趋势变化特征。空间上,柔远川与合水川各站$ {I}_{\mathrm{h}} $ 、$ {I}_{\mathrm{d}} $ 空间分布差异均较大,$ {I}_{\mathrm{h}} $ 的空间变差系数均大于$ {I}_{\mathrm{d}} $ ,但合水川$ {I}_{\mathrm{h}} $ 、$ {I}_{\mathrm{d}} $ 的空间变差系数均大于柔远川;时间上,柔远川、合水川$ {I}_{\mathrm{d}} $ 的空间变差系数分别呈显著增大与减小趋势($ \mathrm{\alpha }=0.05 $ ),增大与减小幅度分别为0.018/10 a与0.039/10 a;柔远川$ {I}_{\mathrm{d}} $ 极值呈显著性增大趋势,增大幅度为7.68 mm/(d·10 a);柔远川分级降水强度变化不显著,合水川中雨与大雨的降水强度呈显著增加趋势,增加幅度为0.61 mm/(d·10 a)和1.29 mm/(d·10 a)。Abstract: Understanding the changes in the regime of precipitation intensity plays an important role in flood risk mitigation and water resources management. Based on the field data of daily and hourly precipitation from 9 rainfall gauge stations in the Rouyuanchuan watershed from 1980 to 2017 and 10 rainfall gauge stations in the Heshuichuan watershed from 1981 to 2017, the changes in the regimes of annual maximum precipitation intensity of 1 h (Ih) and 1 d (Id) and graded precipitation intensity are analyzed using the MK trend test method. Results indicate that:(1) Spatial distributions of Ih and Id are found quite different, with the spatial variation coefficient (CV) of Ih greater than that of Id, and CV of Ih and Id in the Heshuichuan watershed greater than that in Rouyuanchuan. (2) CV of Id in the Rouyuanchuan watershed is found to increase significantly (α=0.05) at a rate of 0.018/10 a while that in the Heshuichuan watershed is found to decrease significantly at a rate of −0.039/10 a. (3) The extreme Id values in the Rouyuanchuan watershed are found to increase significantly at a rate of 7.68 mm/(d·10 a). (4) It is found that no significant change of graded precipitation intensity happens in the Rouyuanchuan watershed while the precipitation intensity of moderate-grade rains and heavy-grade rains in the Heshuichuan watershed show significant increases at rates of 0.61 and 1.29 mm/(d·10 a), respectively. -
表 1 分级降水指标统计
Table 1. Statistical results of the precipitation indices on different grades
流域名称 分级/mm 年均雨量/mm 贡献率/% 年均天数/d 天数占比/% 降水强度/(mm·d−1) 柔远川 0~10 118 23.1 89.7 76.6 1.3 10~25 164 32.2 18.3 15.6 9.0 25~50 153 30.1 7.4 6.4 20.6 ≥50 74 14.6 1.7 1.4 44.9 合计/平均 509 100.0 117.1 100.0 4.4 合水川 0~10 100 18.7 91.7 70.9 1.1 10~25 193 35.8 26.0 20.1 7.4 25~50 165 30.7 9.5 7.3 17.4 ≥50 79 14.8 2.1 1.7 37.2 合计/平均 537 100.0 129.3 100.0 4.2 -
[1] 张建云, 王国庆. 气候变化与中国水资源可持续利用[J]. 水利水运工程学报,2009(4):17-21. (ZHANG Jianyun, WANG Guoqing. Climate change and sustainable utilization of water resources in China[J]. Hydro-Science and Engineering, 2009(4): 17-21. (in Chinese) doi: 10.3969/j.issn.1009-640X.2009.04.003 [2] JIANG T, SU B D, HARTMANN H. Temporal and spatial trends of precipitation and river flow in the Yangtze River Basin, 1961-2000[J]. Geomorphology, 2007, 85(3/4): 143-154. [3] TABARI H, TALAEE P H. Temporal variability of precipitation over Iran: 1966-2005[J]. Journal of Hydrology, 2011, 396(3/4): 313-320. [4] 徐新创, 张学珍, 戴尔阜, 等. 1961-2010年中国降水强度变化趋势及其对降水量影响分析[J]. 地理研究,2014,33(7):1335-1347. (XU Xinchuang, ZHANG Xuezhen, DAI Erfu, et al. Research of trend variability of precipitation intensity and their contribution to precipitation in China from 1961 to 2010[J]. Geographical Research, 2014, 33(7): 1335-1347. (in Chinese) doi: 10.11821/dlyj201407013 [5] DENG Y, JIANG W G, HE B, et al. Change in intensity and frequency of extreme precipitation and its possible teleconnection with large-scale climate index over the China from 1960 to 2015[J]. Journal of Geophysical Research, 2018, 123(4): 2068-2081. [6] 秦大河, 陈振林, 罗勇, 等. 气候变化科学的最新认知[J]. 气候变化研究进展,2007,3(2):63-73. (QIN Dahe, CHEN Zhenlin, LUO Yong, et al. Updated understanding of climate change sciences[J]. Advances in Climate Change Research, 2007, 3(2): 63-73. (in Chinese) doi: 10.3969/j.issn.1673-1719.2007.02.001 [7] 王志福, 钱永甫. 中国极端降水事件的频数和强度特征[J]. 水科学进展,2009,20(1):1-9. (WANG Zhifu, QIAN Yongfu. Frequency and intensity of extreme precipitation events in China[J]. Advances in Water Science, 2009, 20(1): 1-9. (in Chinese) doi: 10.3321/j.issn:1001-6791.2009.01.001 [8] 冯新灵, 罗隆诚, 冯自立. 中国近50年降水变化趋势及突变的Hurst指数试验[J]. 干旱区地理,2009,32(6):859-866. (FENG Xinling, LUO Longcheng, FENG Zili. Hurst index experiment on precipitation change trend and mutation of China in the near 50 years[J]. Arid Land Geography, 2009, 32(6): 859-866. (in Chinese) [9] ZHANG Y, XIA J, SHE D X. Spatiotemporal variation and statistical characteristic of extreme precipitation in the middle reaches of the Yellow River Basin during 1960-2013[J]. Theoretical and Applied Climatology, 2019, 135(1/2): 391-408. [10] 赵安周, 朱秀芳, 潘耀忠. 1965—2013年黄土高原地区极端降水事件时空变化特征[J]. 北京师范大学学报(自然科学版),2017,53(1):43-50. (ZHAO Anzhou, ZHU Xiufang, PAN Yaozhong. Spatiotemporal variations of extreme precipitation events in the Loess Plateau from 1965 to 2013[J]. Journal of Beijing Normal University (Natural Science), 2017, 53(1): 43-50. (in Chinese) [11] 余欣, 侯素珍, 李勇, 等. 黄河无定河流域“2017.7. 26”洪水泥沙来源辨析[J]. 水利水运工程学报,2019(6):31-37. (YU Xin, HOU Suzhen, LI Yong, et al. Identifying sediment sources in Wudinghe River during “7.26” flood in 2017[J]. Hydro-Science and Engineering, 2019(6): 31-37. (in Chinese) doi: 10.12170/201906004 [12] 金双彦, 高文永, 郭邵萌, 等. 大理河2017年“7·26”暴雨产洪产沙浅析[J]. 水文,2019,39(1):93-96. (JIN Shuangyan, GAO Wenyong, GUO Shaomeng, et al. Analysis of runoff and sediment yield from “7·26” flood in Dali River basin in 2017[J]. Journal of China Hydrology, 2019, 39(1): 93-96. (in Chinese) [13] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 降水量等级: GB/T 28592—2012[S]. 北京: 中国标准出版社, 2012. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Grade of precipitation: GB/T 28592—2012[S]. Beijing: Standards Press of China, 2012. (in Chinese) [14] 杨大文, 杨汉波, 雷慧闽. 流域水文学[M]. 北京: 清华大学出版社, 2014. YANG Dawen, YANG Hanbo, LEI Huimin. Watershed hydrology[M]. Beijing: Tsinghua University Press, 2014. (in Chinese) [15] 黄嘉佑, 李庆祥. 气象数据统计分析方法[M]. 北京: 气象出版社, 2015. HUANG Jiayou, LI Qingxiang. Statistical and analysis methods in meteorological data[M]. Beijing: China Meteorological Press, 2015. (in Chinese) [16] 张洪波, 李哲浩, 席秋义, 等. 基于改进过白化的Mann-Kendall趋势检验法[J]. 水力发电学报,2018,37(6):34-46. (ZHANG Hongbo, LI Zhehao, XI Qiuyi, et al. Modified over-whitening process and its application in Mann-Kendall trend tests[J]. Journal of Hydroelectric Engineering, 2018, 37(6): 34-46. (in Chinese) doi: 10.11660/slfdxb.20180605 [17] 姚莉, 赵声蓉, 赵翠光, 等. 我国中东部逐时雨强时空分布及重现期的估算[J]. 地理学报,2010,65(3):293-300. (YAO Li, ZHAO Shengrong, ZHAO Cuiguang, et al. Temporal and spatial distributions of hourly rain intensity and recurrence periods in Eastern and Central China[J]. Acta Geographica Sinica, 2010, 65(3): 293-300. (in Chinese) doi: 10.11821/xb201003004 [18] 王家祁. 中国暴雨[M]. 北京: 中国水利水电出版社, 2002: 90. WANG Jiaqi. Rainstorms in China[M]. Beijing: China Water Power Press, 2002: 90. (in Chinese) -