Analysis of the influence of groundwater salt content on the effect of artificial freezing
-
摘要: 目前对于人工冻结法的研究主要集中在地下水渗流对冻结效果的影响,未考虑地下水含盐量的影响,对地下水含盐量对冻结效果的影响机制认识不深入。含盐量将会影响地下水的热力学性质,在近海地层和海底进行临时地层冻结加固时,高含盐量地下水将会影响地层冻结效果。基于热流耦合模型,采用COMSOL多场耦合分析软件对双管冻结条件下高含盐量地下水冻结机理展开研究,重点分析冻结温度场、冻结交圈、冻结管间距对冻结效果的影响。研究表明:当地下水含盐量高于4%时,下游的冻结范围受地下水含盐量增加的影响较大。随着地下水含盐量的增加,冻结前期用时较长,积极冻结阶段用时逐渐缩短;当冻结壁完全交圈并冻结完全时,冻结壁中心位置处温度随地下水含盐量的提高而有所升高;冻结管间距的增加将会放大地下水含盐量对冻结的影响。Abstract: Currently, the research on artificial freezing method mainly focuses on the influence of groundwater seepage on freezing effect, while neglecting the salt content. As a result, the mechanism of the effect of the groundwater salt content on freezing effect is not well understood. The salt content will change the thermodynamic properties of groundwater. If the artificial freezing method is applied to temporarily conduct ground improvement in the offshore area and the seabed, high-salt-content groundwater will affect the freezing effect. The aim of this paper is to study the freezing mechanism of high-salt-content groundwater under double pipe freezing by utilizing COMSOL multi-field coupling software based on heat flow coupling model. The influences of freezing temperature field, freezing cycle time, distance of double pipes on freezing effect are especially analyzed. The results show that the freezing range of downstream is greatly affected by the increase of groundwater salt content when the groundwater salt content exceeds 4%. The freezing time of the stage of pre-freezing increases with the increasing salt content of groundwater. While the freezing time of the stage of active freezing time gradually decreases, the salt content of groundwater increases. When the frozen walls completely intersect and freeze, the temperature at the center of the frozen wall increases with the increase of the salt content of groundwater. The freezing effect will be magnified by the increase of frozen pipe distance.
-
Key words:
- salt content /
- artificial freezing /
- coupling analysis /
- temperature field /
- frozen wall
-
表 1 砂土层主要计算参数
Table 1. Main calculation parameters of sandy soil layer
介质 密度/(kg·m−3) 导热系数/(W·m−1·K−1) 比热/(J·kg−1·K−1) 孔隙率 砂土 2 436 3.22 1 010 0.185 7 冰 920 2.14 2 060 — 表 2 不同含盐量盐水主要热力学参数
Table 2. Main thermodynamic parameters of brine with different salt contents
含盐量/% 密度/(g·cm−3) 比热容/(kJ·kg−1·K−1) 导热系数/(W·m−1·K−1) 冰点/℃ 0 1.000 00 4.082 0.59 0 1 1.005 34 4.079 0.59 −0.26 2 1.012 46 4.074 0.59 −0.50 3 1.019 35 3.964 0.59 −1.70 4 1.026 80 3.958 0.59 −2.60 5 1.033 40 3.921 0.59 −3.20 6 1.041 27 3.894 0.59 −3.60 -
[1] 余占奎, 黄宏伟, 王如路, 等. 人工冻结技术在上海地铁施工中的应用[J]. 冰川冻土,2005,27(4):550-556. (YU Zhankui, HUANG Hongwei, WANG Rulu, et al. Application of the artificially ground freezing method to Shanghai metro engineering[J]. Journal of Glaciology and Geocryology, 2005, 27(4): 550-556. (in Chinese) doi: 10.3969/j.issn.1000-0240.2005.04.013 [2] 陈维健, 周晓敏, 乔卫国. 大水流地层条件下井筒冻结壁动态监控理论和技术[J]. 煤炭学报,2008,33(9):1006-1010. (CHEN Weijian, ZHOU Xiaomin, QIAO Weiguo. Monitoring theory and technology of freeze wall in shaft sinking of heavy seepage ground[J]. Journal of China Coal Society, 2008, 33(9): 1006-1010. (in Chinese) doi: 10.3321/j.issn:0253-9993.2008.09.010 [3] 杨平, 皮爱如. 高流速地下水流地层冻结壁形成的研究[J]. 岩土工程学报,2001,23(2):167-171. (YANG Ping, PI Airu. Study on the effects of large groundwater flow velocity on the formation of frozen wall[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 167-171. (in Chinese) doi: 10.3321/j.issn:1000-4548.2001.02.008 [4] 高娟, 冯梅梅, 杨维好. 渗流作用下裂隙岩体冻结温度场分布规律研究[J]. 采矿与安全工程学报,2013,30(1):68-73. (GAO Juan, FENG Meimei, YANG Weihao. Research on distribution law of frozen temperature field of fractured rock mass with groundwater seepage[J]. Journal of Mining & Safety Engineering, 2013, 30(1): 68-73. (in Chinese) [5] HAXAIRE, AUKENTHALER M, BRINKGREVE R B J. Application of a thermo-hydro-mechanical model for freezing and thawing[J]. Procedia Engineering, 2017, 191: 74-81. doi: 10.1016/j.proeng.2017.05.156 [6] NEAUPANE K M, YAMABE T, YOSHINAKA R. Simulation of a fully coupled thermo-hydro-mechanical system in freezing and thawing rock[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(5): 563-580. doi: 10.1016/S0148-9062(99)00026-1 [7] HUANG R C, CHANG B M, TSAIC Y S, et al. Influence of seepage flow on temperature field around an artificial frozen soil through model testing and numerical simulations[C]//Proceedings of the 18th Southeast Asian Geotechnical Conference (18SEAGC) & Inaugural AGSSEA Conference (1AGSSEA). Singapore: Research Publishing, 2013: 973-978. [8] 付长静, 李国英, 陈亮, 等. 利用温度场计算渗透流速的数学模型[J]. 水利水运工程学报,2015(6):88-93. (FU Changjing, LI Guoying, CHEN Liang, et al. A mathematical model for calculating penetration velocity using temperature field[J]. Hydro-Science and Engineering, 2015(6): 88-93. (in Chinese) [9] 杨平, 佘才高, 董朝文, 等. 人工冻结法在南京地铁张府园车站的应用[J]. 岩土力学,2003,24(增刊2):388-391. (YANG Ping, SHE Caigao, DONG Chaowen, et al. Application of artificial freezing method in Zhang Fuyuan station of Nanjing subway's[J]. Rock and Soil Mechanics, 2003, 24(Suppl2): 388-391. (in Chinese) [10] 杨平, 袁云辉, 佘才高, 等. 南京地铁集庆门盾构隧道进洞端头人工冻结加固温度实测[J]. 解放军理工大学学报(自然科学版),2009,10(6):591-596. (YANG Ping, YUAN Yunhui, SHE Caigao, et al. Temperature study on artificial soil freezing reinforcement for shield entry in Ji Tsing-men station of Nanjing metro[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2009, 10(6): 591-596. (in Chinese) [11] 郭剑虹, 朱江波, 袁忠银, 等. 上海长江隧道江中段连接通道冻结法施工[J]. 上海师范大学学报(自然科学版),2010,39(4):390-394. (GUO Jianhong, ZHU Jiangbo, YUAN Zhongyin, et al. The construction technology of the connecting passage in the middle of the Shanghai Yangtze River Tunnel[J]. Journal of Shanghai Normal University (Natural Sciences), 2010, 39(4): 390-394. (in Chinese) [12] 杨平, 陈瑾, 张尚贵, 等. 软弱地层联络通道冻结法施工温度及位移场全程实测研究[J]. 岩土工程学报,2017,39(12):2226-2234. (YANG Ping, CHEN Jin, ZHANG Shanggui, et al. Whole range monitoring for temperature and displacement fields of cross passage in soft soils by AGF[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2226-2234. (in Chinese) doi: 10.11779/CJGE201712011 [13] MIYAMOTO K, SHIN'ICHI S, YOSHIMURA M, et al. Development of a relative position detecting system for the underground docking of two shield tunneling machines[J]. Doboku Gakkai Ronbunshu, 1993(18): 161-170. [14] 白井伸一, 赤村重紀, 今川勉, 等. 長距離海底下シールドトンネルの地中接合のための位置計測システムの開発[C]//トンネル工学研究発表会論文報告集. 土木学会, 1991: 131-136. SHIRAI S, AKAMURA S, IMAGAWA T, et al. Development of the relative position measuring system for the underground docking of two shield machines[C]//Proceedings of Tunnel Engineering. Japan Society of Civil Engineers, 1991: 131-136. (in Japanese) [15] 浦沢義彦, 矢吹忠平, 桑原弘昌, 等. ドッキングフード方式によるシールドマシンの地中接合[C]//トンネル工学研究発表会論文報告集. 土木学会, 1993: 299-304. URASAWA Y, YABUKI C, KUWABARA H, et al. Direct underground docking by the shield machine with docking hoods[C]//Proceedings of Tunnel Engineering. Japan Society of Civil Engineers, 1993: 299-304. (in Japanese) [16] 胡向东, 李忻轶, 吴元昊, 等. 拱北隧道管幕冻结法管间冻结封水效果实测研究[J]. 岩土工程学报,2019,41(12):2207-2214. (HU Xiangdong, LI Xinyi, WU Yuanhao, et al. Effect of water-proofing in Gongbei Tunnel by freeze-sealing pipe roof method with field temperature data[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2207-2214. (in Chinese) [17] 齐敦典. 冻结技术修复跨海盾构透水事故[J]. 建筑机械化,2012,33(3):90-91. (QI Dundian. Freezing technology deal with seep water accident when shield under the sea[J]. Construction Mechanization, 2012, 33(3): 90-91. (in Chinese) doi: 10.3969/j.issn.1001-1366.2012.03.025 [18] 苏文德. 冻结工法在富集海水地层下地铁联络通道施工中的应用研究[J]. 水利与建筑工程学报,2019,17(3):181-186. (SU Wende. Application of freezing method in the construction of subway connecting aisle under the enriched seawater stratum[J]. Journal of Water Resources and Architectural Engineering, 2019, 17(3): 181-186. (in Chinese) doi: 10.3969/j.issn.1672-1144.2019.03.033 [19] 陈迅捷, 欧阳幼玲. 海洋环境中混凝土抗冻融循环试验研究[J]. 水利水运工程学报,2009(2):68-71. (CHEN Xunjie, OUYANG Youling. Research on the frost-resistant durability of concrete under sea water conditions[J]. Hydro-Science and Engineering, 2009(2): 68-71. (in Chinese) doi: 10.3969/j.issn.1009-640X.2009.02.012 [20] 孙豹, 王乾峰, 徐童淋, 等. 冻融劣化混凝土压剪作用下力学特性及破坏准则[J]. 水利水运工程学报,2019(4):107-115. (SUN Bao, WANG Qianfeng, XU Tonglin, et al. Mechanical properties and failure criterion of freeze-thaw deteriorated concrete under compressive-shear stress[J]. Hydro-Science and Engineering, 2019(4): 107-115. (in Chinese) doi: 10.12170/201904015 [21] 何世钦, 贡金鑫, 赵国藩. 冻融循环下混凝土中氯离子的扩散性[J]. 水利水运工程学报,2004(4):32-36. (HE Shiqin, GONG Jinxin, ZHAO Guofan. Diffusibility of chloride ion in concrete subjected to freeze-thaw cycles[J]. Hydro-Science and Engineering, 2004(4): 32-36. (in Chinese) doi: 10.3969/j.issn.1009-640X.2004.04.006 [22] 北京石油化工工程公司. 氯碱工业理化常数手册[M]. 北京: 化学工业出版社, 1988. Beijing Petrochemical Engineering Company. Physical and chemical constants of chlor alkali industry[M]. Beijing: Chemical Industry Press, 1988. (in Chinese) [23] WANG B, RONG C X, LIN J, et al. Study on the formation law of the freezing temperature field of freezing shaft sinking under the action of large-flow-rate groundwater[J]. Advances in Materials Science and Engineering, 2019(2): 1-20. -